The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Thermodynamic analysis of the emergence of new regulatory properties in a phosphoribulokinase-glyceraldehyde 3-phosphate dehydrogenase complex.

Glyceraldehyde 3-phosphate dehydrogenase and phosphoribulokinase exist as stable enzymes and as part of a complex in Chlamydomonas reinhardtii. We show here that phosphoribulokinase exerts an imprinting on glyceraldehyde 3-phosphate dehydrogenase, which affects its catalysis by decreasing the energy barrier of the reactions with NADH or NADPH by 3.8 +/- 0.5 and 1.3 +/- 0.3 kJ.mol(-1). Phosphoribulokinase and glyceraldehyde 3-phosphate dehydrogenase within the complex are regulated by NADP(H) but not by NAD(H). The activities of the metastable phosphoribulokinase and glyceraldehyde 3-phosphate dehydrogenase released from the complex preincubated with NADP(H) are different from those of the metastable enzymes released from the untreated complex. NADP(H) increases phosphoribulokinase and NADPH-glyceraldehyde 3-phosphate dehydrogenase activities with a (~)K(0.5 (NADP)) of 0.68 +/- 0.16 mm and a (~)K(0.5 (NADPH)) of 2.93 +/- 0.87 mm and decreases NADH-dependent activity. 1 mm NADP increases the energy barrier of the NADH-glyceraldehyde 3-phosphate dehydrogenase-dependent reaction by 1.8 +/- 0.2 kJ.mol(-1) and decreases that of the reactions catalyzed by phosphoribulokinase and NADPH-glyceraldehyde 3-phosphate dehydrogenase by 3 +/- 0.2 and 1.2 +/- 0.3 kJ.mol(-1), respectively. These cofactors have no effect on the independent stable enzymes. Therefore, protein-protein interactions may give rise to new regulatory properties.[1]

References

 
WikiGenes - Universities