The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Chlamydomonas

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Chlamydomonas

  • Stimulation of a Chlamydomonas chloroplast promoter by novobiocin in situ and in E. coli implies regulation by torsional stress in the chloroplast DNA [1].
  • The Crd1 gene encodes a putative di-iron enzyme required for photosystem I accumulation in copper deficiency and hypoxia in Chlamydomonas reinhardtii [2].
  • These results indicate that the putative CA encoded by icfA is essential to photosynthetic carbon dioxide fixation in cyanobacteria and that plant chloroplast CAs may have evolved from a common ancestor of the prokaryotic CAs, which are distinct from mammalian CAs and Chlamydomonas periplasmic CAs [3].
  • The Ccs1 gene, encoding a highly divergent novel component of a system II type c-type cytochrome biogenesis pathway, is encoded by the previously defined CCS1 locus in Chlamydomonas reinhardtii. phoA and lacZalpha bacterial topological reporters were used to deduce a topological model of the Synechocystis sp. 6803 Ccs1 homologue, CcsB [4].
  • Mice with mutations in Nek1 or Nek8 have cystic kidneys; therefore, our discovery that a member of this phylogenetic group of Nek proteins is localized to the same sites in Chlamydomonas and kidney epithelial cells suggests that Neks play conserved roles in the coordination of cilia and cell cycle progression [5].
 

High impact information on Chlamydomonas

  • We previously localized to chromosome 5p a PCD locus containing DNAH5, which encodes a protein highly similar to the Chlamydomonas gamma-dynein heavy chain [6].
  • Mutation at the Chlamydomonas nuclear NAC2 locus specifically affects stability of the chloroplast psbD transcript encoding polypeptide D2 of PS II [7].
  • Plasmids that replicate autonomously in Chlamydomonas reinhardii were constructed by inserting random DNA fragments from this alga into a plasmid containing the yeast ARG4 locus [8].
  • Based on analysis by high pressure liquid chromatography, greater than 35% of the cytosine residues in chloroplast DNA of vegetative cells were found to be methylated constitutively in the nuclear gene mutation (me-1) of Chlamydomonas reinhardtii, which has an otherwise wild-type phenotype [9].
  • Genetic control of chlorophyll biosynthesis in chlamydomonas: analysis of a mutant affecting synthesis of delta-aminolevulinic acid [10].
 

Chemical compound and disease context of Chlamydomonas

  • In Cyanobacteria and Chlamydomonas reinhardtii, substitution of valine for alanine at position 251 of the photosystem II D1 protein in the loop between transmembrane helices IV and V confers resistance to herbicides that reduce photosystem II function and increases sensitivity to photoinhibition [11].
  • The tails found in Chlamydomonas chloroplasts differ from those of spinach chloroplasts in adenine content, being nearly homopolymeric (>98% adenine) versus 70% in spinach, and are similar in length to those of Escherichia coli, being mostly between 20 and 50 nt [12].
  • The presence of NaCl (3%) as well as of beta-d-thiogalactopyranoside was needed for the expression of Chlamydomonas W80 ascorbate peroxidase in Escherichia coli [13].
  • An engineered Streptomyces hygroscopicus aph 7" gene mediates dominant resistance against hygromycin B in Chlamydomonas reinhardtii [14].
  • Photosensitizers neutral red (type I) and rose bengal (type II) cause light-dependent toxicity in Chlamydomonas reinhardtii and induce the Gpxh gene via increased singlet oxygen formation [15].
 

Biological context of Chlamydomonas

 

Anatomical context of Chlamydomonas

 

Associations of Chlamydomonas with chemical compounds

  • Selective inhibition of tubulin synthesis by amiprophos methyl during flagellar regeneration in Chlamydomonas reinhardi [26].
  • Bombardment of three mutants of the chloroplast atpB gene of Chlamydomonas reinhardtii with high-velocity tungsten microprojectiles that were coated with cloned chloroplast DNA carrying the wild-type gene permanently restored the photosynthetic capacity of the algae [27].
  • Channelrhodopsin-2 (ChR2), a directly light-gated cation channel from the green alga Chlamydomonas reinhardtii has been shown to be a directly light-switched cation-selective ion channel, which employs 11-cis retinal as its chromophore [28].
  • Stable nuclear transformation of Chlamydomonas using the Chlamydomonas gene for nitrate reductase [29].
  • Functional determinants in transit sequences: import and partial maturation by vascular plant chloroplasts of the ribulose-1,5-bisphosphate carboxylase small subunit of Chlamydomonas [30].
 

Gene context of Chlamydomonas

 

Analytical, diagnostic and therapeutic context of Chlamydomonas

References

  1. Stimulation of a Chlamydomonas chloroplast promoter by novobiocin in situ and in E. coli implies regulation by torsional stress in the chloroplast DNA. Thompson, R.J., Mosig, G. Cell (1987) [Pubmed]
  2. The Crd1 gene encodes a putative di-iron enzyme required for photosystem I accumulation in copper deficiency and hypoxia in Chlamydomonas reinhardtii. Moseley, J., Quinn, J., Eriksson, M., Merchant, S. EMBO J. (2000) [Pubmed]
  3. A gene homologous to chloroplast carbonic anhydrase (icfA) is essential to photosynthetic carbon dioxide fixation by Synechococcus PCC7942. Fukuzawa, H., Suzuki, E., Komukai, Y., Miyachi, S. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  4. Functional analysis of a divergent system II protein, Ccs1, involved in c-type cytochrome biogenesis. Dreyfuss, B.W., Hamel, P.P., Nakamoto, S.S., Merchant, S. J. Biol. Chem. (2003) [Pubmed]
  5. A NIMA-related kinase, Fa2p, localizes to a novel site in the proximal cilia of Chlamydomonas and mouse kidney cells. Mahjoub, M.R., Qasim Rasi, M., Quarmby, L.M. Mol. Biol. Cell (2004) [Pubmed]
  6. Mutations in DNAH5 cause primary ciliary dyskinesia and randomization of left-right asymmetry. Olbrich, H., Häffner, K., Kispert, A., Völkel, A., Volz, A., Sasmaz, G., Reinhardt, R., Hennig, S., Lehrach, H., Konietzko, N., Zariwala, M., Noone, P.G., Knowles, M., Mitchison, H.M., Meeks, M., Chung, E.M., Hildebrandt, F., Sudbrak, R., Omran, H. Nat. Genet. (2002) [Pubmed]
  7. Mutation at the Chlamydomonas nuclear NAC2 locus specifically affects stability of the chloroplast psbD transcript encoding polypeptide D2 of PS II. Kuchka, M.R., Goldschmidt-Clermont, M., van Dillewijn, J., Rochaix, J.D. Cell (1989) [Pubmed]
  8. Construction and characterization of autonomously replicating plasmids in the green unicellular alga Chlamydomonas reinhardii. Rochaix, J.D., van Dillewijn, J., Rahire, M. Cell (1984) [Pubmed]
  9. Extensive methylation of chloroplast DNA by a nuclear gene mutation does not affect chloroplast gene transmission in chlamydomonas. Bolen, P.L., Grant, D.M., Swinton, D., Boynton, J.E., Gillham, N.W. Cell (1982) [Pubmed]
  10. Genetic control of chlorophyll biosynthesis in chlamydomonas: analysis of a mutant affecting synthesis of delta-aminolevulinic acid. Wang, W., Boynton, J.E., Gillham, N.W. Cell (1975) [Pubmed]
  11. Site-directed mutations at residue 251 of the photosystem II D1 protein of Chlamydomonas that result in a nonphotosynthetic phenotype and impair D1 synthesis and accumulation. Lardans, A., Gillham, N.W., Boynton, J.E. J. Biol. Chem. (1997) [Pubmed]
  12. Polyadenylation of three classes of chloroplast RNA in Chlamydomonas reinhadtii. Komine, Y., Kwong, L., Anguera, M.C., Schuster, G., Stern, D.B. RNA (2000) [Pubmed]
  13. Molecular characterization and physiological role of ascorbate peroxidase from halotolerant Chlamydomonas sp. W80 strain. Takeda, T., Yoshimura, K., Yoshii, M., Kanahoshi, H., Miyasaka, H., Shigeoka, S. Arch. Biochem. Biophys. (2000) [Pubmed]
  14. An engineered Streptomyces hygroscopicus aph 7" gene mediates dominant resistance against hygromycin B in Chlamydomonas reinhardtii. Berthold, P., Schmitt, R., Mages, W. Protist (2002) [Pubmed]
  15. Photosensitizers neutral red (type I) and rose bengal (type II) cause light-dependent toxicity in Chlamydomonas reinhardtii and induce the Gpxh gene via increased singlet oxygen formation. Fischer, B.B., Krieger-Liszkay, A., Eggen, R.L. Environ. Sci. Technol. (2004) [Pubmed]
  16. The chloroplast ycf7 (petL) open reading frame of Chlamydomonas reinhardtii encodes a small functionally important subunit of the cytochrome b6f complex. Takahashi, Y., Rahire, M., Breyton, C., Popot, J.L., Joliot, P., Rochaix, J.D. EMBO J. (1996) [Pubmed]
  17. Regulation of genes encoding the large subunit of ribulose-1,5-bisphosphate carboxylase and the photosystem II polypeptides D-1 and D-2 during the cell cycle of Chlamydomonas reinhardtii. Herrin, D.L., Michaels, A.S., Paul, A.L. J. Cell Biol. (1986) [Pubmed]
  18. NH2-terminal amino acid sequences of precursor and mature forms of the ribulose-1,5-bisphosphate carboxylase small subunit from Chlamydomonas reinhardtii. Schmidt, G.W., Devillers-Thiery, A., Desruisseaux, H., Blobel, G., Chua, N.H. J. Cell Biol. (1979) [Pubmed]
  19. Identification of an RNA-protein complex involved in chloroplast group II intron trans-splicing in Chlamydomonas reinhardtii. Rivier, C., Goldschmidt-Clermont, M., Rochaix, J.D. EMBO J. (2001) [Pubmed]
  20. The Nac2 gene of Chlamydomonas encodes a chloroplast TPR-like protein involved in psbD mRNA stability. Boudreau, E., Nickelsen, J., Lemaire, S.D., Ossenbühl, F., Rochaix, J.D. EMBO J. (2000) [Pubmed]
  21. Identification of the t complex-encoded cytoplasmic dynein light chain tctex1 in inner arm I1 supports the involvement of flagellar dyneins in meiotic drive. Harrison, A., Olds-Clarke, P., King, S.M. J. Cell Biol. (1998) [Pubmed]
  22. Nucleated assembly of Chlamydomonas and Volvox cell walls. Adair, W.S., Steinmetz, S.A., Mattson, D.M., Goodenough, U.W., Heuser, J.E. J. Cell Biol. (1987) [Pubmed]
  23. Cyclic AMP functions as a primary sexual signal in gametes of Chlamydomonas reinhardtii. Pasquale, S.M., Goodenough, U.W. J. Cell Biol. (1987) [Pubmed]
  24. Characterization of cytoplasmic and nuclear genomes in the colorless alga Polytoma. II. General characterization of organelle nucleic acids. Siu, C., Swift, H., Chiang, K. J. Cell Biol. (1976) [Pubmed]
  25. Missense mutations at lysine 350 in beta 2-tubulin confer altered sensitivity to microtubule inhibitors in Chlamydomonas. Lee, V.D., Huang, B. Plant Cell (1990) [Pubmed]
  26. Selective inhibition of tubulin synthesis by amiprophos methyl during flagellar regeneration in Chlamydomonas reinhardi. Collis, P.S., Weeks, D.P. Science (1978) [Pubmed]
  27. Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Boynton, J.E., Gillham, N.W., Harris, E.H., Hosler, J.P., Johnson, A.M., Jones, A.R., Randolph-Anderson, B.L., Robertson, D., Klein, T.M., Shark, K.B. Science (1988) [Pubmed]
  28. Looking within for vision. Flannery, J.G., Greenberg, K.P. Neuron (2006) [Pubmed]
  29. Stable nuclear transformation of Chlamydomonas using the Chlamydomonas gene for nitrate reductase. Kindle, K.L., Schnell, R.A., Fernández, E., Lefebvre, P.A. J. Cell Biol. (1989) [Pubmed]
  30. Functional determinants in transit sequences: import and partial maturation by vascular plant chloroplasts of the ribulose-1,5-bisphosphate carboxylase small subunit of Chlamydomonas. Mishkind, M.L., Wessler, S.R., Schmidt, G.W. J. Cell Biol. (1985) [Pubmed]
  31. A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Rubio, V., Linhares, F., Solano, R., Martín, A.C., Iglesias, J., Leyva, A., Paz-Ares, J. Genes Dev. (2001) [Pubmed]
  32. Delta-tubulin and epsilon-tubulin: two new human centrosomal tubulins reveal new aspects of centrosome structure and function. Chang, P., Stearns, T. Nat. Cell Biol. (2000) [Pubmed]
  33. Nuclear and chloroplast mutations affect the synthesis or stability of the chloroplast psbC gene product in Chlamydomonas reinhardtii. Rochaix, J.D., Kuchka, M., Mayfield, S., Schirmer-Rahire, M., Girard-Bascou, J., Bennoun, P. EMBO J. (1989) [Pubmed]
  34. Directed chloroplast transformation in Chlamydomonas reinhardtii: insertional inactivation of the psaC gene encoding the iron sulfur protein destabilizes photosystem I. Takahashi, Y., Goldschmidt-Clermont, M., Soen, S.Y., Franzén, L.G., Rochaix, J.D. EMBO J. (1991) [Pubmed]
  35. The chloroplast ycf3 and ycf4 open reading frames of Chlamydomonas reinhardtii are required for the accumulation of the photosystem I complex. Boudreau, E., Takahashi, Y., Lemieux, C., Turmel, M., Rochaix, J.D. EMBO J. (1997) [Pubmed]
  36. Site-specific mutagenesis of the D1 subunit of photosystem II in wild-type Chlamydomonas. Przibilla, E., Heiss, S., Johanningmeier, U., Trebst, A. Plant Cell (1991) [Pubmed]
  37. Discovery of an algal mitochondrial carbonic anhydrase: molecular cloning and characterization of a low-CO2-induced polypeptide in Chlamydomonas reinhardtii. Eriksson, M., Karlsson, J., Ramazanov, Z., Gardeström, P., Samuelsson, G. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  38. Two-dimensional analysis of flagellar proteins from wild-type and paralyzed mutants of Chlamydomonas reinhardtii. Piperno, G., Huang, B., Luck, D.J. Proc. Natl. Acad. Sci. U.S.A. (1977) [Pubmed]
  39. Mutations altering the predicted secondary structure of a chloroplast 5' untranslated region affect its physical and biochemical properties as well as its ability to promote translation of reporter mRNAs both in the Chlamydomonas reinhardtii chloroplast and in Escherichia coli. Fargo, D.C., Boynton, J.E., Gillham, N.W. Mol. Cell. Biol. (1999) [Pubmed]
 
WikiGenes - Universities