The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Delayed abscission and shorter Internodes correlate with a reduction in the ethylene receptor LeETR1 transcript in transgenic tomato.

Stable transformation of tomato (Lycopersicon esculentum cv Ailsa Craig) plants with a construct containing the antisense sequence for the receiver domain and 3'-untranslated portion of the tomato ethylene receptor (LeETR1) under the control of an enhanced cauliflower mosaic virus 35S promoter resulted in some expected and unexpected phenotypes. In addition to reduced LeETR1 transcript levels, the two most consistently observed phenotypes in the transgenic lines were delayed abscission and reduced plant size. Fruit coloration and softening were essentially unaffected, and all the seedlings from first generation seed displayed a normal triple response to ethylene. Two independent lines with a single copy of the transgene and reduced LeETR1 transcript accumulation were selected for detailed phenotypic analysis of second generation (R1) plants. Delayed abscission, shorter internode length, and reduced auxin movement all correlated with the presence of the transgene and the degree of reduced LeETR1 transcript accumulation. No significant differences were noted for fruit coloration or fruit softening on R1 plants and all seedlings from R1 and R2 seed displayed a normal triple response. LeETR2 transcript accumulation was only slightly reduced in the R1 plants compared with azygous plants, and LeETR3 (NR) transcript levels appeared to be unaffected by the transgene. We propose that ethylene signal transduction occurs through parallel paths that partially intersect to regulate shared ethylene responses.[1]

References

  1. Delayed abscission and shorter Internodes correlate with a reduction in the ethylene receptor LeETR1 transcript in transgenic tomato. Whitelaw, C.A., Lyssenko, N.N., Chen, L., Zhou, D., Mattoo, A.K., Tucker, M.L. Plant Physiol. (2002) [Pubmed]
 
WikiGenes - Universities