The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

auxin     2-(1H-indol-3-yl)ethanoic acid

Synonyms: Rhizopin, Heteroauxin, Hexteroauxin, indoleacetate, Indolylacetate, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of auxin

 

High impact information on auxin

 

Chemical compound and disease context of auxin

 

Biological context of auxin

  • Similar analysis with root tip tissue treated with IAA reveals unique and overlapping expression patterns in the various cell types of the lateral root cap, cell division, and cell expansion zones [9].
  • The thiamin diphosphate (ThDP)-dependent enzyme indolepyruvate decarboxylase (IPDC) is involved in the biosynthetic pathway of the phytohormone 3-indoleacetic acid and catalyzes the nonoxidative decarboxylation of 3-indolepyruvate to 3-indoleacetaldehyde and carbon dioxide [12].
  • IAA is tolerated by humans in high doses and HRP is a robust enzyme meeting many of the requirements for targeting to tumours by coupling to antibodies or polymers, or by gene transfection [13].
  • Upon treatment with IAA/HRP, liposomes undergo lipid peroxidation, strand breaks and adducts are formed in supercoiled plasmid DNA, and mammalian cells in culture lose colony-forming ability [2].
  • The phenotype of MjCM-1 expressed at low levels can be rescued by the addition of indole-3-acetic acid (IAA), indicating MjCM-1 overexpression reduces IAA biosynthesis [14].
 

Anatomical context of auxin

 

Associations of auxin with other chemical compounds

 

Gene context of auxin

  • TIR1 is part of a ubiquitin protein ligase required for degradation of Aux/IAA proteins [8].
  • An amplified auxin asymmetry may explain the mdr4 hypertropism [25].
  • These results indicate that the increased auxin efflux activity conferred by PGP4 reduces auxin levels in the root hair cell and consequently inhibits root hair elongation [26].
  • Modulation of auxin sensitivity by Pi was found to depend on the auxin receptor TRANSPORT INHIBITOR RESPONSE1 (TIR1) and the transcription factor AUXIN RESPONSE FACTOR19 (ARF19) [27].
  • The efficacy of a number of auxin analogues and auxin transport inhibitors to displace IAA binding from AUX1 has also been determined and can be rationalized in terms of their physiological effects [28].
  • Taken together, our data show that D6PK is required for efficient auxin transport and suggest that PIN proteins are D6PK phosphorylation targets [29].
  • Our results are consistent with the possibility that limiting accumulation of the IAA precursor IBA via PDR8-promoted efflux contributes to auxin homeostasis [30].
  • Immunolocalization of the PINFORMED1 (PIN1) polar auxin transporter revealed that PIN1 expression marks leaf primordia in maize, similarly to Arabidopsis [31].
  • We show that auxin promoted PIN2 recycling from endosomes to the PM and increased PIN2 steady state levels in the PM fraction [32].
  • We therefore suggest that the auxin phenotypes of iar4 mutants are the result of altered IAA homeostasis [33].
  • This involves repression of the AUXIN INDUCIBLE (Aux/IAA) gene AXR2/IAA7, encoding a key component of ABA- and auxin-dependent responses during postgerminative growth [34].
 

Analytical, diagnostic and therapeutic context of auxin

References

  1. The site of cellulose synthesis. Hormone treatment alters the intracellular location of alkali-insoluble beta-1,4-glucan (cellulose) synthetase activities. Shore, G., Maclachlan, G.A. J. Cell Biol. (1975) [Pubmed]
  2. Oxidative activation of indole-3-acetic acids to cytotoxic species- a potential new role for plant auxins in cancer therapy. Folkes, L.K., Wardman, P. Biochem. Pharmacol. (2001) [Pubmed]
  3. Resistance of transgenic tobacco seedlings expressing the Agrobacterium tumefaciens C58-6b gene, to growth-inhibitory levels of cytokinin is associated with elevated IAA levels and activation of phenylpropanoid metabolism. Gális, I., Simek, P., Van Onckelen, H.A., Kakiuchi, Y., Wabiko, H. Plant Cell Physiol. (2002) [Pubmed]
  4. Effect of beta-indoleacetic acid on RNA and protein synthesis in Escherichia coli. Drobysheva, N.A., Drobyshev, V.I. Biology bulletin of the Academy of Sciences of the USSR. (1979) [Pubmed]
  5. Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation. Staswick, P.E., Tiryaki, I., Rowe, M.L. Plant Cell (2002) [Pubmed]
  6. Specific photoaffinity labeling of two plasma membrane polypeptides with an azido auxin. Hicks, G.R., Rayle, D.L., Jones, A.M., Lomax, T.L. Proc. Natl. Acad. Sci. U.S.A. (1989) [Pubmed]
  7. Binding and functional properties of concanavalin A and its derivatives. III. Interactions with indoleacetic acid and other hydrophobic ligands. Edelman, G.M., Wang, J.L. J. Biol. Chem. (1978) [Pubmed]
  8. The IAA1 protein is encoded by AXR5 and is a substrate of SCF(TIR1). Yang, X., Lee, S., So, J.H., Dharmasiri, S., Dharmasiri, N., Ge, L., Jensen, C., Hangarter, R., Hobbie, L., Estelle, M. Plant J. (2004) [Pubmed]
  9. Unique and overlapping expression patterns among the Arabidopsis 1-amino-cyclopropane-1-carboxylate synthase gene family members. Tsuchisaka, A., Theologis, A. Plant Physiol. (2004) [Pubmed]
  10. Halogenated indole-3-acetic acids as oxidatively activated prodrugs with potential for targeted cancer therapy. Rossiter, S., Folkes, L.K., Wardman, P. Bioorg. Med. Chem. Lett. (2002) [Pubmed]
  11. Auxins affected ginsenoside production and growth of hairy roots in Panax hybrid. Washida, D., Shimomura, K., Takido, M., Kitanaka, S. Biol. Pharm. Bull. (2004) [Pubmed]
  12. Intermediates and transition states in thiamin diphosphate-dependent decarboxylases. A kinetic and NMR study on wild-type indolepyruvate decarboxylase and variants using indolepyruvate, benzoylformate, and pyruvate as substrates. Schütz, A., Golbik, R., König, S., Hübner, G., Tittmann, K. Biochemistry (2005) [Pubmed]
  13. Indole-3-acetic acids and horseradish peroxidase: a new prodrug/enzyme combination for targeted cancer therapy. Wardman, P. Curr. Pharm. Des. (2002) [Pubmed]
  14. Meloidogyne javanica chorismate mutase 1 alters plant cell development. Doyle, E.A., Lambert, K.N. Mol. Plant Microbe Interact. (2003) [Pubmed]
  15. Roles of the reactive oxygen species-generating peroxidase reactions in plant defense and growth induction. Kawano, T. Plant Cell Rep. (2003) [Pubmed]
  16. Effects of indoxylsulfate on the in vitro hepatic metabolism of various compounds using human liver microsomes and hepatocytes. Hanada, K., Ogawa, R., Son, K., Sasaki, Y., Kikkawa, A., Ichihara, S., Ogata, H. Nephron. Physiology [electronic resource]. (2006) [Pubmed]
  17. Differences in the binding of thyroid hormones and indoles by rat alpha 1-fetoprotein and serum albumin. Hervé, F., Grigorova, A.M., Rajkowski, K., Cittanova, N. Eur. J. Biochem. (1982) [Pubmed]
  18. Levels and immunolocalization of endogenous cytokinins in thidiazuron-induced shoot organogenesis in carnation. Casanova, E., Valdés, A.E., Fernández, B., Moysset, L., Trillas, M.I. J. Plant Physiol. (2004) [Pubmed]
  19. A liquid chromatographic-tandem mass spectrometric method for the analysis of serotonin and related indoles in human whole blood. Danaceau, J.P., Anderson, G.M., McMahon, W.M., Crouch, D.J. Journal of analytical toxicology. (2003) [Pubmed]
  20. Galloylglucoses and riccionidin A in Rhus javanica adventitious root cultures. Taniguchi, S., Yazaki, K., Yabuuchi, R., Kawakami, K., Ito, H., Hatano, T., Yoshida, T. Phytochemistry (2000) [Pubmed]
  21. Thidiazuron influences the endogenous levels of cytokinins and IAA during the flowering of isolated shoots of Dendrobium. de Melo Ferreira, W., Barbante Kerbauy, G., Elizabeth Kraus, J., Pescador, R., Mamoru Suzuki, R. J. Plant Physiol. (2006) [Pubmed]
  22. Differential effects of sucrose and auxin on localized phosphate deficiency-induced modulation of different traits of root system architecture in Arabidopsis. Jain, A., Poling, M.D., Karthikeyan, A.S., Blakeslee, J.J., Peer, W.A., Titapiwatanakun, B., Murphy, A.S., Raghothama, K.G. Plant Physiol. (2007) [Pubmed]
  23. Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Wang, D., Pajerowska-Mukhtar, K., Culler, A.H., Dong, X. Curr. Biol. (2007) [Pubmed]
  24. Nitric oxide triggers phosphatidic acid accumulation via phospholipase D during auxin-induced adventitious root formation in cucumber. Lanteri, M.L., Laxalt, A.M., Lamattina, L. Plant Physiol. (2008) [Pubmed]
  25. Separating the roles of acropetal and basipetal auxin transport on gravitropism with mutations in two Arabidopsis multidrug resistance-like ABC transporter genes. Lewis, D.R., Miller, N.D., Splitt, B.L., Wu, G., Spalding, E.P. Plant. Cell (2007) [Pubmed]
  26. P-glycoprotein4 displays auxin efflux transporter-like action in Arabidopsis root hair cells and tobacco cells. Cho, M., Lee, S.H., Cho, H.T. Plant. Cell (2007) [Pubmed]
  27. Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor. Pérez-Torres, C.A., López-Bucio, J., Cruz-Ramírez, A., Ibarra-Laclette, E., Dharmasiri, S., Estelle, M., Herrera-Estrella, L. Plant. Cell (2008) [Pubmed]
  28. The binding of auxin to the Arabidopsis auxin influx transporter AUX1. Carrier, D.J., Bakar, N.T., Swarup, R., Callaghan, R., Napier, R.M., Bennett, M.J., Kerr, I.D. Plant Physiol. (2008) [Pubmed]
  29. The polarly localized D6 PROTEIN KINASE is required for efficient auxin transport in Arabidopsis thaliana. Zourelidou, M., Müller, I., Willige, B.C., Nill, C., Jikumaru, Y., Li, H., Schwechheimer, C. Development (2009) [Pubmed]
  30. The Arabidopsis PLEIOTROPIC DRUG RESISTANCE8/ABCG36 ATP binding cassette transporter modulates sensitivity to the auxin precursor indole-3-butyric acid. Strader, L.C., Bartel, B. Plant. Cell (2009) [Pubmed]
  31. Studies of aberrant phyllotaxy1 mutants of maize indicate complex interactions between auxin and cytokinin signaling in the shoot apical meristem. Lee, B.H., Johnston, R., Yang, Y., Gallavotti, A., Kojima, M., Travençolo, B.A., Costa, L.F., Sakakibara, H., Jackson, D. Plant Physiol. (2009) [Pubmed]
  32. The E3 ubiquitin ligase SCFTIR1/AFB and membrane sterols play key roles in auxin regulation of endocytosis, recycling, and plasma membrane accumulation of the auxin efflux transporter PIN2 in Arabidopsis thaliana. Pan, J., Fujioka, S., Peng, J., Chen, J., Li, G., Chen, R. Plant. Cell (2009) [Pubmed]
  33. Arabidopsis IAR4 modulates auxin response by regulating auxin homeostasis. Quint, M., Barkawi, L.S., Fan, K.T., Cohen, J.D., Gray, W.M. Plant Physiol. (2009) [Pubmed]
  34. Abscisic acid represses growth of the Arabidopsis embryonic axis after germination by enhancing auxin signaling. Belin, C., Megies, C., Hauserová, E., Lopez-Molina, L. Plant. Cell (2009) [Pubmed]
  35. The effect of renal transplantation on a major endogenous ligand retained in uremic serum. Mabuchi, H., Nakahashi, H., Hamajima, T., Aikawa, I., Oka, T. Am. J. Kidney Dis. (1989) [Pubmed]
  36. A rapid, highly efficient trapping system for the collection of 3-indoleacetic acid from a gas chromatography column. Carnes, M.G., Brenner, M.L. Anal. Biochem. (1975) [Pubmed]
  37. The role of polar auxin transport through pedicels of Prunus avium L. in relation to fruit development and retention. Else, M.A., Stankiewicz-Davies, A.P., Crisp, C.M., Atkinson, C.J. J. Exp. Bot. (2004) [Pubmed]
  38. A new enzyme immunoassay micromethod for differential quantitation of the main natural forms of indolyl 3-acetic acid. Gusakovskaya, M.A., Blintsov, A.N., Lebedeva, A.F. Dokl. Biochem. Biophys. (2006) [Pubmed]
  39. Tropane alkaloid production and shoot regeneration in hairy and adventitious root cultures of Duboisia myoporoides-D. leichhardtii hybrid. Yoshimatsu, K., Sudo, H., Kamada, H., Kiuchi, F., Kikuchi, Y., Sawada, J., Shimomura, K. Biol. Pharm. Bull. (2004) [Pubmed]
 
WikiGenes - Universities