The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Purification and characterization of the Escherichia coli exoribonuclease RNase R. Comparison with RNase II.

Escherichia coli RNase R, a 3' --> 5' exoribonuclease homologous to RNase II, was overexpressed and purified to near homogeneity in its native untagged form by a rapid procedure. The purified enzyme was free of nucleic acid. It migrated upon gel filtration chromatography as a monomer with an apparent molecular mass of approximately 95 kDa, in close agreement with its expected size based on the sequence of the rnr gene. RNase R was most active at pH 7.5-9.5 in the presence of 0.1-0.5 mm Mg(2+) and 50-500 mm KCl. The enzyme shares many catalytic properties with RNase II. Both enzymes are nonspecific processive ribonucleases that release 5'-nucleotide monophosphates and leave a short undigested oligonucleotide core. However, whereas RNase R shortens RNA processively to di- and trinucleotides, RNase II becomes more distributive when the length of the substrate reaches approximately 10 nucleotides, and it leaves an undigested core of 3-5 nucleotides. Both enzymes work on substrates with a 3'-phosphate group. RNase R and RNase II are most active on synthetic homopolymers such as poly(A), but their substrate specificities differ. RNase II is more active on poly(A), whereas RNase R is much more active on rRNAs. Neither RNase R nor RNase II can degrade a complete RNA-RNA or DNA-RNA hybrid or one with a 4-nucleotide 3'-RNA overhang. RNase R differs from RNase II in that it cannot digest DNA oligomers and is not inhibited by such molecules, suggesting that it does not bind DNA. Although the in vivo function of RNase R is not known, its ability to digest certain natural RNAs may explain why it is maintained in E. coli together with RNase II.[1]

References

 
WikiGenes - Universities