The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Protease-activated receptor-2 (PAR-2) in brain microvascular endothelium and its regulation by plasmin and elastase.

Protease-activated receptors (PARs) mediate cell activation after proteolytic cleavage of their extracellular amino terminus. We have reported earlier that primary cultures of rat brain capillary endothelial (RBCE) cells express at least two receptors for thrombin: PAR-1 and PAR-3. In the present study we show that PAR-2 activation by trypsin or by the PAR-2 agonist peptide (SLIGRL) evokes [Ca(2+) ](i) signal in RBCE cells. Taking advantage of RBCE cells expressing PAR-1 and PAR-2, we show that trypsin activates both receptors. The relative agonist activity of trypsin and thrombin on PARs of RBCE cells compared with that of SLIGRL were 112% and 48%, respectively, whereas the potency of trypsin was 10(5) -fold higher than that of SLIGRL. Because under pathological conditions other proteases such as plasmin or leukocyte elastase may reach the cells of the blood-brain barrier, we investigated the effect of these proteases on RBCE cells. Elastase evoked a small increase in [Ca(2+) ](i) but preincubation of cells with elastase dose-dependently reduced the trypsin-induced [Ca(2+) ](i) signal. Plasmin had a 30% inhibitory effect on the trypsin-induced response, and reduced the SLIGRL signal by 20%. It is concluded that PAR-2 is functional in brain capillary endothelium, and that the main fibrinolytic proteases, plasmin and elastase, may regulate PAR-2 signalling under pathological conditions.[1]

References

  1. Protease-activated receptor-2 (PAR-2) in brain microvascular endothelium and its regulation by plasmin and elastase. Dömötör, E., Bartha, K., Machovich, R., Adam-Vizi, V. J. Neurochem. (2002) [Pubmed]
 
WikiGenes - Universities