The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Mapping of QTL influencing saccharin consumption in the selectively bred alcohol-preferring and -nonpreferring rat lines.

The inbred preferring (iP) and nonpreferring (iNP) rat strains were derived from the selectively bred alcohol-preferring (P) and alcohol-nonpreferring (NP) lines. Previously, 381 iP x iNP F2 progeny were generated to identify quantitative trait loci (QTLs) influencing alcohol consumption and preference. Saccharin consumption (ml/48 h) and saccharin intake (ml/kg/day) were also measured in the F2 sample and were significantly correlated with both alcohol consumption and preference (all r > or = .20, p < .0001), suggesting that there might be some QTLs influencing both saccharin and alcohol phenotypes. We have performed a genome screen using F2 animals with extreme saccharin or alcohol consumption to identify QTLs contributing to saccharin-related phenotypes. Lod scores greater than 2.0 were found on chromosomes 3, 16 and 18 in this sample. Additional genotyping was performed in these regions in the full sample of 381 F2 progeny to further characterize these putative QTLs. On chromosome 3, the maximum lod score in the full sample was 2.7 with saccharin consumption. This QTL appears to overlap with a QTL identified for alcohol consumption in the iP and iNP lines and has pleiotropic effects on both phenotypes. Interestingly, this region of rat chromosome 3 is syntenic with mouse chromosome 2, where a QTL influencing alcohol preference has been previously reported. The QTL on chromosome 16 has a maximum lod score of 4.0 with saccharin intake and 2.6 with saccharin consumption. The QTL on chromosome 18 has a maximum lod score of 2.7 with saccharin consumption. Taken together, these data provide the first results of a genome screen for QTLs contributing to saccharin phenotypes in the rat.[1]

References

  1. Mapping of QTL influencing saccharin consumption in the selectively bred alcohol-preferring and -nonpreferring rat lines. Foroud, T., Bice, P., Castelluccio, P., Bo, R., Ritchotte, A., Stewart, R., Lumeng, L., Li, T.K., Carr, L. Behav. Genet. (2002) [Pubmed]
 
WikiGenes - Universities