The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Lod Score

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Lod Score


Psychiatry related information on Lod Score


High impact information on Lod Score

  • A genome-wide screen in Family 1 linked diabetes to chromosome 9q34 (maximal lod score 5.07) [10].
  • A dominant modifier, DFNM1, that suppresses deafness in the 7 nonpenetrant individuals was mapped to a 5.6-cM region on chromosome 1q24 with a lod score of 4.31 at theta=0 for D1S2815 [11].
  • Only four regions of the genome outside IDDM1/MHC, which was still the only major locus detected, were not excluded at lambda(s)=3 and lod=-2, of which two showed evidence of linkage: chromosome 10p13-p11 (maximum lod score (MLS)=4.7, P=3x10(-6), lambda(s)=1.56) and chromosome 16q22-16q24 (MLS=3.4, P=6.5x10(-5), lambda(s)=1.6) [12].
  • One marker, D1S104, adjacent to the apolipoprotein A-II (APOA2) gene on chromosome 1, revealed a lod score of Z = 3.50 assuming a dominant mode of inheritance [13].
  • We obtained a maximum two-point lod score of 6.97 at theta = 0 with the marker D2S389; multipoint linkage analysis yielded a maximum lod score of 7.86 with the marker D2S311 [14].

Chemical compound and disease context of Lod Score

  • Positive lod scores between RC8 and Xg prompted us to examine the linkage relationship of RC8 to the steroid sulfatase-X-linked recessive ichthyosis (XRI) locus which is situated 15 cM proximal from Xg in the subtelomeric region of Xp [15].

Biological context of Lod Score

  • The peak lod scores in two of the pedigrees have dropped several lod units to clearly negative values at the RCP-F8-G6PD gene cluster [16].
  • In addition, studies of three affected families (with 17 affected members and 51 unaffected members) established linkage with the oncogene INT2 (peak lod score, 3.30, at 0 percent recombination); the MEN-1 gene was thus mapped to the pericentromeric region of the long arm of chromosome 11 (11q13) [17].
  • Here we show linkage between MHS and DNA markers from the GPI region of human chromosome 19 with a maximum log likelihood ratio (lod score) of 5.65 at the CYP2A locus [18].
  • The tryptophan allele cosegregated with the disease phenotype in the four families studied, giving a lod score (logarithm of odds ratio) for linkage of 4.5, and subsequent linkage disequilibrium analysis conditional on linkage gave an additional lod score of 7.1 [19].
  • Our studies established linkage between the X-linked recessive idiopathic hypoparathyroid gene (HPT) and the DXS98 (4D.8) locus, peak LOD score = 3.82 (theta = 0.05), thereby mapping HPT to the distal long arm of the X chromosome (Xq26-Xq27) [20].

Anatomical context of Lod Score

  • Trmq1 (for T cell ratio modifier QTL 1) was detected in the telomeric end of c6 (peak marker D6Mit15 at 74 cM) and had a maximum LOD score of 4 [21].
  • Radiation hybrid mapping of the CNGA3 gene encoding the alpha-subunit of the cGMP gated cation channel in human cone photoreceptors resulted in a maximum lod score of 16.1 with marker D2S2311 combined with a calculated physical distance of 6.19cR10,000 [22].
  • In this study, the most significant lod scores were observed for the UC families on chromosome 2p11 (D2S2333), in the vicinity of the REG gene cluster which is strikingly overexpressed in the IBD mucosa [23].
  • Significantly positive 2-point lod score values (Z=3.01 at theta=0) were obtained for markers D1S305 and D1S2721, which are known to flank the gene for connexin 50 (Cx50) or gap junction protein alpha-8 (Gja8) [24].
  • Linkage at a recombination frequency of 0.10 or less between the bovine major histocompatibility system and the B, C and L red blood cell groups and the albumin, haemoglobin and transferrin loci was excluded by Morton's lod score method [25].

Associations of Lod Score with chemical compounds

  • Plasma apoAII levels were linked to the apoAII gene (lod score 19.6) and were highly correlated with plasma HDL cholesterol levels (r = 0.63, P = 0.0001), indicating that apoAII expression influences HDL cholesterol levels [26].
  • A lod score of 16 between HLA-B and Factor B allotypes was calculated at a maximum likelihood value of the recombinant fraction of 0.04 [27].
  • RESULTS: Our results revealed significantly negative lod scores in the region of the D4 dopamine receptor gene and the TH gene [28].
  • Based on a lod score of 12.9 at 1% recombination units and the existence of two different acceptors for the biosynthesis of the H antigen, a new genetic model is proposed in which H and Se would be two closely linked structural genes coding for two different 2-alpha-L-fucosyltransferases [29].
  • The area where the LOD score reaches the maximum encompasses the location of the gene for the beta3-subunit of the nicotinic acetylcholine receptor (CHRNB3), thus making this gene a possible candidate for these specific forms of adolescent-onset IGE [30].

Gene context of Lod Score

  • In a large family with linkage to COL2A1, with a LOD score of 2.8, a unique L467F mutation produced a novel "afibrillar" vitreous gel devoid of all normal lamella structure [31].
  • Additionally, when the disease status of these individuals was coded as "unknown" in linkage analysis, we also found, with markers at the PKD1 locus, significant LOD scores (i.e., >3.0) [32].
  • In these families, pairwise and multipoint lod scores below -2 exclude MHS from an interval spanning more than 26 cM and comprising the RYR1 and the previously described MHS locus [33].
  • Two-locus maximum lod score analysis of a multifactorial trait: joint consideration of IDDM2 and IDDM4 with IDDM1 in type 1 diabetes [34].
  • Overall in our series, BRCA1 mutations have been detected in 26 families: 16 with positive BRCA1 lod scores, 7 with negative lod scores (reflecting multiple sporadic breast cancers), and 3 not tested for linkage [35].

Analytical, diagnostic and therapeutic context of Lod Score


  1. Genetic linkage of the Marfan syndrome, ectopia lentis, and congenital contractural arachnodactyly to the fibrillin genes on chromosomes 15 and 5. The International Marfan Syndrome Collaborative Study. Tsipouras, P., Del Mastro, R., Sarfarazi, M., Lee, B., Vitale, E., Child, A.H., Godfrey, M., Devereux, R.B., Hewett, D., Steinmann, B. N. Engl. J. Med. (1992) [Pubmed]
  2. Localization of a gene causing cystinuria to chromosome 2p. Pras, E., Arber, N., Aksentijevich, I., Katz, G., Schapiro, J.M., Prosen, L., Gruberg, L., Harel, D., Liberman, U., Weissenbach, J. Nat. Genet. (1994) [Pubmed]
  3. Genetic epidemiology of breast cancer and associated cancers in high-risk families. II. Linkage analysis. King, M.C., Go, R.C., Lynch, H.T., Elston, R.C., Terasaki, P.I., Petrakis, N.L., Rodgers, G.C., Lattanzio, D., Bailey-Wilson, J. J. Natl. Cancer Inst. (1983) [Pubmed]
  4. Linkage of type 2 diabetes to the glucokinase gene. Hattersley, A.T., Turner, R.C., Permutt, M.A., Patel, P., Tanizawa, Y., Chiu, K.C., O'Rahilly, S., Watkins, P.J., Wainscoat, J.S. Lancet (1992) [Pubmed]
  5. Cutaneous malignant melanoma and familial dysplastic nevi: evidence for autosomal dominance and pleiotropy. Bale, S.J., Chakravarti, A., Greene, M.H. Am. J. Hum. Genet. (1986) [Pubmed]
  6. A possible vulnerability locus for bipolar affective disorder on chromosome 21q22.3. Straub, R.E., Lehner, T., Luo, Y., Loth, J.E., Shao, W., Sharpe, L., Alexander, J.R., Das, K., Simon, R., Fieve, R.R. Nat. Genet. (1994) [Pubmed]
  7. A comprehensive linkage analysis of chromosome 21q22 supports prior evidence for a putative bipolar affective disorder locus. Aita, V.M., Liu, J., Knowles, J.A., Terwilliger, J.D., Baltazar, R., Grunn, A., Loth, J.E., Kanyas, K., Lerer, B., Endicott, J., Wang, Z., Penchaszadeh, G., Gilliam, T.C., Baron, M. Am. J. Hum. Genet. (1999) [Pubmed]
  8. Genetic association and linkage analysis of the apolipoprotein CII locus and familial Alzheimer's disease. Schellenberg, G.D., Boehnke, M., Wijsman, E.M., Moore, D.K., Martin, G.M., Bird, T.D. Ann. Neurol. (1992) [Pubmed]
  9. hKCNN3 which maps to chromosome 1q21 is not the causative gene in periodic catatonia, a familial subtype of schizophrenia. Stöber, G., Meyer, J., Nanda, I., Wienker, T.F., Saar, K., Jatzke, S., Schmid, M., Lesch, K.P., Beckmann, H. European archives of psychiatry and clinical neuroscience. (2000) [Pubmed]
  10. Mutations in the CEL VNTR cause a syndrome of diabetes and pancreatic exocrine dysfunction. Raeder, H., Johansson, S., Holm, P.I., Haldorsen, I.S., Mas, E., Sbarra, V., Nermoen, I., Eide, S.A., Grevle, L., Bjørkhaug, L., Sagen, J.V., Aksnes, L., Søvik, O., Lombardo, D., Molven, A., Njølstad, P.R. Nat. Genet. (2006) [Pubmed]
  11. Dominant modifier DFNM1 suppresses recessive deafness DFNB26. Riazuddin, S., Castelein, C.M., Ahmed, Z.M., Lalwani, A.K., Mastroianni, M.A., Naz, S., Smith, T.N., Liburd, N.A., Friedman, T.B., Griffith, A.J., Riazuddin, S., Wilcox, E.R. Nat. Genet. (2000) [Pubmed]
  12. A search for type 1 diabetes susceptibility genes in families from the United Kingdom. Mein, C.A., Esposito, L., Dunn, M.G., Johnson, G.C., Timms, A.E., Goy, J.V., Smith, A.N., Sebag-Montefiore, L., Merriman, M.E., Wilson, A.J., Pritchard, L.E., Cucca, F., Barnett, A.H., Bain, S.C., Todd, J.A. Nat. Genet. (1998) [Pubmed]
  13. Linkage of familial combined hyperlipidaemia to chromosome 1q21-q23. Pajukanta, P., Nuotio, I., Terwilliger, J.D., Porkka, K.V., Ylitalo, K., Pihlajamäki, J., Suomalainen, A.J., Syvänen, A.C., Lehtimäki, T., Viikari, J.S., Laakso, M., Taskinen, M.R., Ehnholm, C., Peltonen, L. Nat. Genet. (1998) [Pubmed]
  14. Localization of the gene for familial primary pulmonary hypertension to chromosome 2q31-32. Nichols, W.C., Koller, D.L., Slovis, B., Foroud, T., Terry, V.H., Arnold, N.D., Siemieniak, D.R., Wheeler, L., Phillips, J.A., Newman, J.H., Conneally, P.M., Ginsburg, D., Loyd, J.E. Nat. Genet. (1997) [Pubmed]
  15. Linkage studies in a family with X-linked recessive ichthyosis employing a cloned DNA sequence from the distal short arm of the X chromosome. Wieacker, P., Davies, K.E., Mevorah, B., Ropers, H.H. Hum. Genet. (1983) [Pubmed]
  16. Diminished support for linkage between manic depressive illness and X-chromosome markers in three Israeli pedigrees. Baron, M., Freimer, N.F., Risch, N., Lerer, B., Alexander, J.R., Straub, R.E., Asokan, S., Das, K., Peterson, A., Amos, J. Nat. Genet. (1993) [Pubmed]
  17. Association of parathyroid tumors in multiple endocrine neoplasia type 1 with loss of alleles on chromosome 11. Thakker, R.V., Bouloux, P., Wooding, C., Chotai, K., Broad, P.M., Spurr, N.K., Besser, G.M., O'Riordan, J.L. N. Engl. J. Med. (1989) [Pubmed]
  18. Localization of the malignant hyperthermia susceptibility locus to human chromosome 19q12-13.2. McCarthy, T.V., Healy, J.M., Heffron, J.J., Lehane, M., Deufel, T., Lehmann-Horn, F., Farrall, M., Johnson, K. Nature (1990) [Pubmed]
  19. An allele of COL9A2 associated with intervertebral disc disease. Annunen, S., Paassilta, P., Lohiniva, J., Perälä, M., Pihlajamaa, T., Karppinen, J., Tervonen, O., Kröger, H., Lähde, S., Vanharanta, H., Ryhänen, L., Göring, H.H., Ott, J., Prockop, D.J., Ala-Kokko, L. Science (1999) [Pubmed]
  20. Mapping the gene causing X-linked recessive idiopathic hypoparathyroidism to Xq26-Xq27 by linkage studies. Thakker, R.V., Davies, K.E., Whyte, M.P., Wooding, C., O'Riordan, J.L. J. Clin. Invest. (1990) [Pubmed]
  21. Linkage analysis of variations in CD4:CD8 T cell subsets between C57BL/6 and DBA/2. Myrick, C., DiGuisto, R., DeWolfe, J., Bowen, E., Kappler, J., Marrack, P., Wakeland, E.K. Genes Immun. (2002) [Pubmed]
  22. Human rod monochromacy: linkage analysis and mapping of a cone photoreceptor expressed candidate gene on chromosome 2q11. Wissinger, B., Jägle, H., Kohl, S., Broghammer, M., Baumann, B., Hanna, D.B., Hedels, C., Apfelstedt-Sylla, E., Randazzo, G., Jacobson, S.G., Zrenner, E., Sharpe, L.T. Genomics (1998) [Pubmed]
  23. Genome-wide search in Finnish families with inflammatory bowel disease provides evidence for novel susceptibility loci. Paavola-Sakki, P., Ollikainen, V., Heliö, T., Halme, L., Turunen, U., Lahermo, P., Lappalainen, M., Färkkilä, M., Kontula, K. Eur. J. Hum. Genet. (2003) [Pubmed]
  24. Connexin 50 mutation in a family with congenital "zonular nuclear" pulverulent cataract of Pakistani origin. Berry, V., Mackay, D., Khaliq, S., Francis, P.J., Hameed, A., Anwar, K., Mehdi, S.Q., Newbold, R.J., Ionides, A., Shiels, A., Moore, T., Bhattacharya, S.S. Hum. Genet. (1999) [Pubmed]
  25. Relationships between the bovine major histocompatibility system and commonly recognized erythrocyte and serum polymorphisms. Stear, M.J., Bell, K. Animal blood groups and biochemical genetics. (1984) [Pubmed]
  26. Genetic factors in lipoprotein metabolism. Analysis of a genetic cross between inbred mouse strains NZB/BINJ and SM/J using a complete linkage map approach. Purcell-Huynh, D.A., Weinreb, A., Castellani, L.W., Mehrabian, M., Doolittle, M.H., Lusis, A.J. J. Clin. Invest. (1995) [Pubmed]
  27. The chromosomal order of genes controlling the major histocompatibility complex, properdin factor B, and deficiency of the second component of complement. Raum, D., Glass, D., Carpenter, C.B., Alper, C.A., Schur, P.H. J. Clin. Invest. (1976) [Pubmed]
  28. Analysis of the D4 dopamine receptor gene variant in an Italian schizophrenia kindred. Macciardi, F., Petronis, A., Van Tol, H.H., Marino, C., Cavallini, M.C., Smeraldi, E., Kennedy, J.L. Arch. Gen. Psychiatry (1994) [Pubmed]
  29. A new genetic model proposing that the Se gene is a structural gene closely linked to the H gene. Oriol, R., Danilovs, J., Hawkins, B.R. Am. J. Hum. Genet. (1981) [Pubmed]
  30. Evidence for linkage of adolescent-onset idiopathic generalized epilepsies to chromosome 8-and genetic heterogeneity. Durner, M., Zhou, G., Fu, D., Abreu, P., Shinnar, S., Resor, S.R., Moshe, S.L., Rosenbaum, D., Cohen, J., Harden, C., Kang, H., Wallace, S., Luciano, D., Ballaban-Gil, K., Klotz, I., Dicker, E., Greenberg, D.A. Am. J. Hum. Genet. (1999) [Pubmed]
  31. Variation in the vitreous phenotype of Stickler syndrome can be caused by different amino acid substitutions in the X position of the type II collagen Gly-X-Y triple helix. Richards, A.J., Baguley, D.M., Yates, J.R., Lane, C., Nicol, M., Harper, P.S., Scott, J.D., Snead, M.P. Am. J. Hum. Genet. (2000) [Pubmed]
  32. Bilineal disease and trans-heterozygotes in autosomal dominant polycystic kidney disease. Pei, Y., Paterson, A.D., Wang, K.R., He, N., Hefferton, D., Watnick, T., Germino, G.G., Parfrey, P., Somlo, S., St George-Hyslop, P. Am. J. Hum. Genet. (2001) [Pubmed]
  33. Evidence for genetic heterogeneity of malignant hyperthermia susceptibility. Deufel, T., Golla, A., Iles, D., Meindl, A., Meitinger, T., Schindelhauer, D., DeVries, A., Pongratz, D., MacLennan, D.H., Johnson, K.J. Am. J. Hum. Genet. (1992) [Pubmed]
  34. Two-locus maximum lod score analysis of a multifactorial trait: joint consideration of IDDM2 and IDDM4 with IDDM1 in type 1 diabetes. Cordell, H.J., Todd, J.A., Bennett, S.T., Kawaguchi, Y., Farrall, M. Am. J. Hum. Genet. (1995) [Pubmed]
  35. Novel inherited mutations and variable expressivity of BRCA1 alleles, including the founder mutation 185delAG in Ashkenazi Jewish families. Friedman, L.S., Szabo, C.I., Ostermeyer, E.A., Dowd, P., Butler, L., Park, T., Lee, M.K., Goode, E.L., Rowell, S.E., King, M.C. Am. J. Hum. Genet. (1995) [Pubmed]
  36. A normal beta-globin allele as a modifier gene ameliorating the severity of alpha-thalassemia in mice. Leder, A., Wiener, E., Lee, M.J., Wickramasinghe, S.N., Leder, P. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  37. Localization of idiopathic generalized epilepsy on chromosome 6p in families of juvenile myoclonic epilepsy patients. Durner, M., Sander, T., Greenberg, D.A., Johnson, K., Beck-Mannagetta, G., Janz, D. Neurology (1991) [Pubmed]
  38. Quantitative trait locus analysis of plasma lipoprotein levels in an autoimmune mouse model : interactions between lipoprotein metabolism, autoimmune disease, and atherogenesis. Gu, L., Johnson, M.W., Lusis, A.J. Arterioscler. Thromb. Vasc. Biol. (1999) [Pubmed]
  39. Lateral line, nervous system, and maternal expression of Frizzled 7a during zebrafish embryogenesis. Sumanas, S., Kim, H.J., Hermanson, S.B., Ekker, S.C. Mech. Dev. (2002) [Pubmed]
  40. Thyroid peroxidase: evidence for disease gene exclusion in Pendred's syndrome. Gausden, E., Armour, J.A., Coyle, B., Coffey, R., Hochberg, Z., Pembrey, M., Britton, K.E., Grossman, A., Reardon, W., Trembath, R. Clin. Endocrinol. (Oxf) (1996) [Pubmed]
WikiGenes - Universities