The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Mechanical function of intermediate filaments in arteries of different size examined using desmin deficient mice.

Protein composition and mechanical function of intermediate filaments were examined in arteries of different sizes using desmin deficient mice (Des-/-) and their wild-type controls (Des+/+). Using SDS-PAGE gels and Western blots we found a gradient in desmin expression in the arterial tree; the desmin content increased from the elastic artery aorta, via the muscular mesenteric artery to the resistance-sized mesenteric microarteries approximately 150 microm in diameter in Des+/+ mice. Mechanical experiments were performed on the aorta, the mesenteric artery and resistance-sized arteries using wire myographs. For aorta and mesenteric artery, no differences in passive or active circumference- stress relations were found between Des-/- and Des+/+ mice. In microarteries, both passive and active stress were lower in the Des-/- group. In conclusion, large elastic and muscular arteries contain a relatively low amount of desmin, and the desmin intermediate filaments do not seem to play a major role in the mechanical properties of these larger arterial vessels. In the microarteries, where expression of desmin is high, desmin plays a role in supporting both passive and active tension.[1]

References

  1. Mechanical function of intermediate filaments in arteries of different size examined using desmin deficient mice. Wede, O.K., Löfgren, M., Li, Z., Paulin, D., Arner, A. J. Physiol. (Lond.) (2002) [Pubmed]
 
WikiGenes - Universities