The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Mesenteric Arteries

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Mesenteric Arteries

 

Psychiatry related information on Mesenteric Arteries

 

High impact information on Mesenteric Arteries

  • To examine the effects of RMCP-II more directly 1 mg of the highly purified chymase was introduced into the cranial mesenteric artery in ex vivo perfused normal rats [7].
  • In mesenteric arteries, EDHF-mediated relaxations and hyperpolarizations were significantly reduced in Cu,Zn-SOD-/- mice with no inhibitory effect of catalase, while endothelium-independent relaxations and hyperpolarizations were preserved [8].
  • EDHF-mediated relaxation and hyperpolarization in response to acetylcholine (ACh) were markedly attenuated in small mesenteric arteries from eNOS knockout (eNOS-KO) mice [9].
  • We have undertaken this study to investigate the effect of the normalization of vascular NO production, as estimated by aortic cyclic guanosine monophosphate (cGMP) concentration and endothelial nitric oxide synthase (eNOS) protein expression in the aorta and mesenteric artery, on sodium and water excretion [10].
  • Using perfused rat mesenteric arteries, PAMP (0, 1, 5, and 10 pmol/ml) decreased norepinephrine overflow by periarterial electrical nerve stimulation in a dose-dependent fashion (0.244 +/- 0.043, 0.231 +/- 0.048, 0.195 +/- 0.061 and 0.168 +/- 0.051 ng/gram tissue weigh: NS, P < 0.05, and P < 0.02, respectively) [11].
 

Chemical compound and disease context of Mesenteric Arteries

 

Biological context of Mesenteric Arteries

 

Anatomical context of Mesenteric Arteries

 

Associations of Mesenteric Arteries with chemical compounds

 

Gene context of Mesenteric Arteries

 

Analytical, diagnostic and therapeutic context of Mesenteric Arteries

References

  1. P2Y12 regulates platelet adhesion/activation, thrombus growth, and thrombus stability in injured arteries. Andre, P., Delaney, S.M., LaRocca, T., Vincent, D., DeGuzman, F., Jurek, M., Koller, B., Phillips, D.R., Conley, P.B. J. Clin. Invest. (2003) [Pubmed]
  2. The effect of insulin treatment on changes in vascular reactivity in chronic, experimental diabetes. MacLeod, K.M. Diabetes (1985) [Pubmed]
  3. A newly identified peptide, proadrenomedullin N-terminal 20 peptide, induces hypotensive action via pertussis toxin-sensitive mechanisms. Shimosawa, T., Ando, K., Fujita, T. Hypertension (1997) [Pubmed]
  4. Structural vascular changes in hypertension: role of angiotensin II, dietary sodium supplementation, blood pressure, and time. Simon, G., Illyes, G., Csiky, B. Hypertension (1998) [Pubmed]
  5. Norepinephrine turnover in the cardiovascular tissues and brain stem of the rabbit during development of one-kidney and two-kidney Goldblatt hypertension. Tanaka, T., Seki, A., Fujii, J., Kurihara, H., Ikeda, M. Hypertension (1982) [Pubmed]
  6. Running for health: how much running for how much health? McCully, K. Clin. Sci. (2004) [Pubmed]
  7. Release of the mucosal mast cell granule chymase, rat mast cell protease-II, during anaphylaxis is associated with the rapid development of paracellular permeability to macromolecules in rat jejunum. Scudamore, C.L., Thornton, E.M., McMillan, L., Newlands, G.F., Miller, H.R. J. Exp. Med. (1995) [Pubmed]
  8. Pivotal role of Cu,Zn-superoxide dismutase in endothelium-dependent hyperpolarization. Morikawa, K., Shimokawa, H., Matoba, T., Kubota, H., Akaike, T., Talukder, M.A., Hatanaka, M., Fujiki, T., Maeda, H., Takahashi, S., Takeshita, A. J. Clin. Invest. (2003) [Pubmed]
  9. Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in mice. Matoba, T., Shimokawa, H., Nakashima, M., Hirakawa, Y., Mukai, Y., Hirano, K., Kanaide, H., Takeshita, A. J. Clin. Invest. (2000) [Pubmed]
  10. Nitric oxide synthase (NOS) inhibition for one week improves renal sodium and water excretion in cirrhotic rats with ascites. Martin, P.Y., Ohara, M., Gines, P., Xu, D.L., St John, J., Niederberger, M., Schrier, R.W. J. Clin. Invest. (1998) [Pubmed]
  11. Proadrenomedullin NH(2)-terminal 20 peptide, a new product of the adrenomedullin gene, inhibits norepinephrine overflow from nerve endings. Shimosawa, T., Ito, Y., Ando, K., Kitamura, K., Kangawa, K., Fujita, T. J. Clin. Invest. (1995) [Pubmed]
  12. Contribution of vasopressin in dexamethasone-induced hypertension in rats. Iijima, F., Malik, K.U. Hypertension (1988) [Pubmed]
  13. Vascular aldosterone in genetically hypertensive rats. Takeda, Y., Miyamori, I., Inaba, S., Furukawa, K., Hatakeyama, H., Yoneda, T., Mabuchi, H., Takeda, R. Hypertension (1997) [Pubmed]
  14. Mechanisms of hypoxic vasodilatation of isolated rat mesenteric arteries: a comparison with metabolic inhibition. Otter, D., Austin, C. J. Physiol. (Lond.) (1999) [Pubmed]
  15. Adenosine A(2A) receptors in portal hypertension: their role in the abnormal response to adenosine of the cranial mesenteric artery in rabbits. de Brito, M.T., Canto, A., Correia, J.H., Cunha, R.A., Marques, M.C. Br. J. Pharmacol. (2002) [Pubmed]
  16. Increased vascular collagen and noncollagenous protein synthesis contributes to sustain chronic phase of two-kidney, one-clip renovascular hypertension. Nakada, T., Iijima, Y., Kubota, Y., Watanabe, M., Ishigooka, M., Suzuki, H. J. Urol. (1996) [Pubmed]
  17. Conditional and targeted overexpression of vascular chymase causes hypertension in transgenic mice. Ju, H., Gros, R., You, X., Tsang, S., Husain, M., Rabinovitch, M. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  18. Glomerular and vascular atrial natriuretic factor receptors in saralasin-sensitive and -resistant two-kidney, one-clip hypertensive rats. Garcia, R., Gauquelin, G., Cantin, M., Schiffrin, E.L. Circ. Res. (1988) [Pubmed]
  19. Endothelial-dependent vascular effects of insulin and insulin-like growth factor I in the perfused rat mesenteric artery and aortic ring. Wu, H.Y., Jeng, Y.Y., Yue, C.J., Chyu, K.Y., Hsueh, W.A., Chan, T.M. Diabetes (1994) [Pubmed]
  20. Endothelial dysfunction in streptozotocin-diabetic rats is not reversed by dietary probucol or simvastatin supplementation. Palmer, A.M., Gopaul, N., Dhir, S., Thomas, C.R., Poston, L., Tribe, R.M. Diabetologia (1998) [Pubmed]
  21. Basal secretion and anaphylactic release of rat mast cell protease-II (RMCP-II) from ex vivo perfused rat jejunum: translocation of RMCP-II into the gut lumen and its relation to mucosal histology. Scudamore, C.L., Pennington, A.M., Thornton, E., McMillan, L., Newlands, G.F., Miller, H.R. Gut (1995) [Pubmed]
  22. Mechanism of decreased vascular reactivity to angiotensin II in conscious, potassium-deficient rats. Paller, M.S., Douglas, J.G., Linas, S.L. J. Clin. Invest. (1984) [Pubmed]
  23. Angiotensin-converting enzyme labeled with [3H]captopril. Tissue localizations and changes in different models of hypertension in the rat. Wilson, S.K., Lynch, D.R., Snyder, S.H. J. Clin. Invest. (1987) [Pubmed]
  24. Chronic control of high blood pressure in the spontaneously hypertensive rat by delivery of angiotensin type 1 receptor antisense. Iyer, S.N., Lu, D., Katovich, M.J., Raizada, M.K. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  25. Calcium channels in muscle cells isolated from rat mesenteric arteries: modulation by dihydropyridine drugs. Bean, B.P., Sturek, M., Puga, A., Hermsmeyer, K. Circ. Res. (1986) [Pubmed]
  26. Localization of atrial natriuretic factor receptors in the mesenteric arterial bed. Comparison with angiotensin II and endothelin receptors. De León, H., Bonhomme, M.C., Thibault, G., Garcia, R. Circ. Res. (1995) [Pubmed]
  27. Oxygen modulates prostacyclin synthesis in ovine fetal pulmonary arteries by an effect on cyclooxygenase. Shaul, P.W., Campbell, W.B., Farrar, M.A., Magness, R.R. J. Clin. Invest. (1992) [Pubmed]
  28. Mevalonate availability affects human and rat resistance vessel function. Roullet, J.B., Xue, H., Roullet, C.M., Fletcher, W.S., Cipolla, M.J., Harker, C.T., McCarron, D.A. J. Clin. Invest. (1995) [Pubmed]
  29. Intestinal diamine oxidase and histamine release in rabbit mesenteric ischemia. Kusche, J., Lorenz, W., Stahlknecht, C.D., Richter, H., Hesterberg, R., Schmal, A., Hinterlang, E., Weber, D., Ohmann, C. Gastroenterology (1981) [Pubmed]
  30. Involvement of endothelin in the regulation of human vascular tonus. Potent vasoconstrictor effect and existence in endothelial cells. Miyauchi, T., Tomobe, Y., Shiba, R., Ishikawa, T., Yanagisawa, M., Kimura, S., Sugishita, Y., Ito, I., Goto, K., Masaki, T. Circulation (1990) [Pubmed]
  31. Differential effects of endothelin receptor activation on cyclic flow variations in rat mesenteric arteries. Fujise, K., Stacy, L., Beck, P., Yeh, E.T., Chuang, A., Brock, T.A., Willerson, J.T. Circulation (1997) [Pubmed]
  32. Role of AT2 receptors in angiotensin II-stimulated contraction of small mesenteric arteries in young SHR. Touyz, R.M., Endemann, D., He, G., Li, J.S., Schiffrin, E.L. Hypertension (1999) [Pubmed]
  33. Vascular expression of angiotensin type 2 receptor in the adult rat: influence of angiotensin II infusion. Bonnet, F., Cooper, M.E., Carey, R.M., Casley, D., Cao, Z. J. Hypertens. (2001) [Pubmed]
  34. Small artery mechanics in hyperhomocysteinemic mice: effects of angiotensin II. Neves, M.F., Endemann, D., Amiri, F., Virdis, A., Pu, Q., Rozen, R., Schiffrin, E.L. J. Hypertens. (2004) [Pubmed]
  35. Developmental expression of endothelin receptors in postnatal swine mesenteric artery. Su, B.Y., Reber, K.M., Nankervis, C.A. Pediatr. Res. (2004) [Pubmed]
  36. Modification by prostaglandins E1 and E2, indomethacin, and arachidonic acid of the vasoconstrictor responses of the isolated perfused rabbit and rat mesenteric arteries to adrenergic stimuli. Malik, K.U., Ryan, P., McGiff, J.C. Circ. Res. (1976) [Pubmed]
  37. Modulation of endothelium-dependent hyperpolarization and relaxation to acetylcholine in rat mesenteric artery by cytochrome P450 enzyme activity. Chen, G., Cheung, D.W. Circ. Res. (1996) [Pubmed]
  38. Regulation of the postsynaptic alpha-adrenergic receptor in rat mesenteric artery. Effects of chemical sympathectomy and epinephrine treatment. Colucci, W.S., Gimbrone, M.A., Alexander, R.W. Circ. Res. (1981) [Pubmed]
  39. Comparison of the effect of naloxone on cerebral versus mesenteric arterial smooth muscle in feline and primate species. Sasaki, T., Kassell, N.F., Turner, D.M., Coester, H.C. Stroke (1984) [Pubmed]
  40. Increased expression of endothelin-1 gene in blood vessels of deoxycorticosterone acetate-salt hypertensive rats. Larivière, R., Day, R., Schiffrin, E.L. Hypertension (1993) [Pubmed]
 
WikiGenes - Universities