The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

P2X purinergic receptor channel expression and function in bovine aortic endothelium.

We examined bovine aortic endothelial cells (BAECs) for the functional expression of P2X receptors, the ATP-gated cation channels. We identified the P2X subtypes present in BAECs using RT-PCR. mRNA was present for only three of seven family members: P2X4, P2X5, and P2X7. We then characterized agonist-activated currents in whole cell and outside-out patch recordings using 2-methyl-thio-ATP (MeSATP) as a P2X4 and P2X5 receptor agonist and 2',3'-O-(4-benzoylbenzoyl)ATP (BzATP) as a P2X7 receptor agonist. MeSATP (10-20 microM) produced current with characteristics of P2X4 receptors. The current was an inwardly rectifying current, reversed near 0 mV, slowly desensitized, was not blocked by suramin (300 microM) or reactive blue (60 microM), and had a single channel conductance of 36 pS. BzATP (10-100 microM), on the other hand, activated a 9-pS channel with sustained activity in the continued presence of the agonist. BzATP-activated current was blocked by reactive blue (60 microM) and by suramin (approximately 50% block at 300 microM). We confirmed, by immunocytochemistry, the presence of P2X4 and P2X7 protein. The agonists failed, however, to induce significant uptake of the large molecule YO-PRO, indicating the lack of pore development that has been demonstrated for P2X7 and P2X4 in response to agonist in some cell types.[1]

References

  1. P2X purinergic receptor channel expression and function in bovine aortic endothelium. Ramirez, A.N., Kunze, D.L. Am. J. Physiol. Heart Circ. Physiol. (2002) [Pubmed]
 
WikiGenes - Universities