The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Cloning of the mouse insulin receptor substrate-3 (mIRS-3) promoter, and its regulation by p53.

The insulin receptor susbtrate-3 (IRS-3) is a member of a family of intermediate adapter proteins that function as major intracellular targets for phosphorylation by the activated insulin and IGF-I receptors. Among the four IRS proteins identified so far, IRS-3 exhibits a rather peculiar expression pattern during both the embryonic development and adult life, suggesting a different mechanism of regulation of its expression. In this study, we cloned the 5' flanking region of the mIRS-3 gene and analyzed its promoter activity. The mIRS-3 promoter is inhibited by wild-type p53, and this effect is completely abolished by cotransfection of a dominant negative p53. Tumor-derived p53 mutants show variable, but lower suppressing capability than wt p53. In addition, treatment with doxorubicin inhibits endogenous expression of mIRS-3 mRNA in C2C12 and 3T3-L1 cells. The DNA region spanning from nucleotides -287 and -178 in the mIRS-3 promoter is responsible for a 32.2% reduction of the mouse double minute 2 (MDM2) promoter activity, suggesting its involvement in the p53-mediated inhibitory effect. In conclusion, our study demonstrates that the mIRS-3 promoter is regulated by p53 at the transcriptional level. The inhibition of mIRS-3 promoter by wild-type p53, and its de-repression by tumor-derived p53 mutants, appears to be similar to that previously reported for the IGF-I receptor promoter, suggesting a common role of these two genes in p53-mediated cell growth and differentiation.[1]

References

  1. Cloning of the mouse insulin receptor substrate-3 (mIRS-3) promoter, and its regulation by p53. Sciacchitano, S., Orecchio, A., Lavra, L., Misiti, S., Giacchini, A., Zani, M., Danese, D., Gurtner, A., Soddu, S., Di Mario, U., Andreoli, M. Mol. Endocrinol. (2002) [Pubmed]
 
WikiGenes - Universities