The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

3T3-L1 Cells

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of 3T3-L1 Cells


High impact information on 3T3-L1 Cells

  • During adipose conversion of murine 3T3-L1 cells, the arrangement of vimentin intermediate filaments (IFs) changes from an extended fibrillar state to a complex cage formation tightly associated with the forming lipid globules [4].
  • As would be expected from their known actions on tissue adipose cells, lipogenic and lipolytic hormones and drugs affect the rate of synthesis and accumulation of triglyceride by 3T3-L1 cells, but in contrast to bromodeoxyuridine, these modulating agents do not seem to affect the proportion of cells which undergoes the adipose conversion [5].
  • If 3T3-L1 cells incorporate bromodeoxyuridine during growth, triglyceride synthesis does not increase when the cells reach a stationary state, and triglycerides do not accumulate [5].
  • Antisense-Gs alpha alone induced differentiation by day 7, indicating that Gs alpha activity modulates differentiation in 3T3-L1 cells, acting in a new role which is independent of increased intracellular cAMP [6].
  • LPL appears to be anchored to the 3T3-L1 cell surface by glycosyl-PI, and its rapid release by insulin may be due to activation of a glycosyl-PI-specific phospholipase C [7].

Biological context of 3T3-L1 Cells

  • Deficiency of Plg, but not of urokinase or tissue-type plasminogen activator, suppresses adipogenesis during differentiation of 3T3-L1 cells and mammary-gland involution [8].
  • Transient transfections using LPL promoter deletions fused to luciferase in differentiated 3T3-L1 cells with and without TNF alpha treatment indicated that a DNA region downstream of -180 bp confers the TNF alpha effect [9].
  • The dose- and time-dependent relationships for phosphorylation of this construct in extracts of LIF-stimulated 3T3-L1 cells were superimposable with those for the stimulation of mitogen-activated protein kinase (MAPK) [10].
  • However, TGF-beta does not markedly alter differentiation-related mitosis in 3T3-L1 cells [11].
  • Treatment of 3T3-L1 cells with T47D cell conditioned medium or TNF-alpha changed neither the numbers of cells in G0-G1, S, and G2 phases nor the rate of [3H]thymidine incorporation, thus ruling out a proliferative effect of malignant cells on the surrounding fibroblasts [12].

Anatomical context of 3T3-L1 Cells


Associations of 3T3-L1 Cells with chemical compounds


Gene context of 3T3-L1 Cells


Analytical, diagnostic and therapeutic context of 3T3-L1 Cells


  1. p110beta is up-regulated during differentiation of 3T3-L1 cells and contributes to the highly insulin-responsive glucose transport activity. Asano, T., Kanda, A., Katagiri, H., Nawano, M., Ogihara, T., Inukai, K., Anai, M., Fukushima, Y., Yazaki, Y., Kikuchi, M., Hooshmand-Rad, R., Heldin, C.H., Oka, Y., Funaki, M. J. Biol. Chem. (2000) [Pubmed]
  2. Changes in the guanine nucleotide-binding proteins, Gi and Go, during differentiation of 3T3-L1 cells. Gierschik, P., Morrow, B., Milligan, G., Rubin, C., Spiegel, A. FEBS Lett. (1986) [Pubmed]
  3. An extract of Lagerstroemia speciosa L. has insulin-like glucose uptake-stimulatory and adipocyte differentiation-inhibitory activities in 3T3-L1 cells. Liu, F., Kim, J., Li, Y., Liu, X., Li, J., Chen, X. J. Nutr. (2001) [Pubmed]
  4. Rearrangement of the vimentin cytoskeleton during adipose conversion: formation of an intermediate filament cage around lipid globules. Franke, W.W., Hergt, M., Grund, C. Cell (1987) [Pubmed]
  5. An established preadipose cell line and its differentiation in culture. II. Factors affecting the adipose conversion. Green, H., Kehinde, O. Cell (1975) [Pubmed]
  6. Antisense oligodeoxynucleotides to GS protein alpha-subunit sequence accelerate differentiation of fibroblasts to adipocytes. Wang, H.Y., Watkins, D.C., Malbon, C.C. Nature (1992) [Pubmed]
  7. Insulin-stimulated release of lipoprotein lipase by metabolism of its phosphatidylinositol anchor. Chan, B.L., Lisanti, M.P., Rodriguez-Boulan, E., Saltiel, A.R. Science (1988) [Pubmed]
  8. A plasma kallikrein-dependent plasminogen cascade required for adipocyte differentiation. Selvarajan, S., Lund, L.R., Takeuchi, T., Craik, C.S., Werb, Z. Nat. Cell Biol. (2001) [Pubmed]
  9. Tumor necrosis factor-alpha eliminates binding of NF-Y and an octamer-binding protein to the lipoprotein lipase promoter in 3T3-L1 adipocytes. Morin, C.L., Schlaepfer, I.R., Eckel, R.H. J. Clin. Invest. (1995) [Pubmed]
  10. Phosphorylation of the human leukemia inhibitory factor (LIF) receptor by mitogen-activated protein kinase and the regulation of LIF receptor function by heterologous receptor activation. Schiemann, W.P., Graves, L.M., Baumann, H., Morella, K.K., Gearing, D.P., Nielsen, M.D., Krebs, E.G., Nathanson, N.M. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  11. Type beta transforming growth factor controls the adipogenic differentiation of 3T3 fibroblasts. Ignotz, R.A., Massagué, J. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
  12. Tumor necrosis factor alpha and interleukin 11 secreted by malignant breast epithelial cells inhibit adipocyte differentiation by selectively down-regulating CCAAT/enhancer binding protein alpha and peroxisome proliferator-activated receptor gamma: mechanism of desmoplastic reaction. Meng, L., Zhou, J., Sasano, H., Suzuki, T., Zeitoun, K.M., Bulun, S.E. Cancer Res. (2001) [Pubmed]
  13. SH3-domain-containing proteins function at distinct steps in clathrin-coated vesicle formation. Simpson, F., Hussain, N.K., Qualmann, B., Kelly, R.B., Kay, B.K., McPherson, P.S., Schmid, S.L. Nat. Cell Biol. (1999) [Pubmed]
  14. Insulin-stimulated protein phosphorylation in 3T3-L1 preadipocytes. Smith, C.J., Wejksnora, P.J., Warner, J.R., Rubin, C.S., Rosen, O.M. Proc. Natl. Acad. Sci. U.S.A. (1979) [Pubmed]
  15. Dexamethasone increases the synthesis of sphingomyelin in 3T3-L1 cell membranes. Nelson, D.H., Murray, D.K. Proc. Natl. Acad. Sci. U.S.A. (1982) [Pubmed]
  16. Lipoprotein lipase suppression in 3T3-L1 cells by an endotoxin-induced mediator from exudate cells. Kawakami, M., Pekala, P.H., Lane, M.D., Cerami, A. Proc. Natl. Acad. Sci. U.S.A. (1982) [Pubmed]
  17. ARP is a plasma membrane-associated Ras-related GTPase with remote similarity to the family of ADP-ribosylation factors. Schürmann, A., Massmann, S., Joost, H.G. J. Biol. Chem. (1995) [Pubmed]
  18. Regulation of lipoprotein lipase translation by epinephrine in 3T3-L1 cells. Importance of the 3' untranslated region. Yukht, A., Davis, R.C., Ong, J.M., Ranganathan, G., Kern, P.A. J. Clin. Invest. (1995) [Pubmed]
  19. Hormone-sensitive lipase in differentiated 3T3-L1 cells and its activation by cyclic AMP-dependent protein kinase. Kawamura, M., Jensen, D.F., Wancewicz, E.V., Joy, L.L., Khoo, J.C., Steinberg, D. Proc. Natl. Acad. Sci. U.S.A. (1981) [Pubmed]
  20. Antidiabetic thiazolidinediones inhibit leptin (ob) gene expression in 3T3-L1 adipocytes. Kallen, C.B., Lazar, M.A. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  21. Insig-1 "brakes" lipogenesis in adipocytes and inhibits differentiation of preadipocytes. Li, J., Takaishi, K., Cook, W., McCorkle, S.K., Unger, R.H. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  22. Mitogen-activated protein kinase activation is not necessary for, but antagonizes, 3T3-L1 adipocytic differentiation. Font de Mora, J., Porras, A., Ahn, N., Santos, E. Mol. Cell. Biol. (1997) [Pubmed]
  23. Krüppel-like factor-6 promotes preadipocyte differentiation through histone deacetylase 3-dependent repression of DLK1. Li, D., Yea, S., Li, S., Chen, Z., Narla, G., Banck, M., Laborda, J., Tan, S., Friedman, J.M., Friedman, S.L., Walsh, M.J. J. Biol. Chem. (2005) [Pubmed]
  24. Pantophysin is a phosphoprotein component of adipocyte transport vesicles and associates with GLUT4-containing vesicles. Brooks, C.C., Scherer, P.E., Cleveland, K., Whittemore, J.L., Lodish, H.F., Cheatham, B. J. Biol. Chem. (2000) [Pubmed]
  25. The suppressor of cytokine signaling (SOCS)-7 interacts with the actin cytoskeleton through vinexin. Martens, N., Wery, M., Wang, P., Braet, F., Gertler, A., Hooghe, R., Vandenhaute, J., Hooghe-Peters, E.L. Exp. Cell Res. (2004) [Pubmed]
  26. The transcription factor Fos-related antigen 1 is induced by thiazolidinediones during differentiation of 3T3-L1 cells. Albrektsen, T., Fleckner, J. Mol. Pharmacol. (2001) [Pubmed]
  27. Regulation by retinoic acid of acylation-stimulating protein and complement C3 in human adipocytes. Scantlebury, T., Sniderman, A.D., Cianflone, K. Biochem. J. (2001) [Pubmed]
  28. NGF gene expression and secretion in white adipose tissue: regulation in 3T3-L1 adipocytes by hormones and inflammatory cytokines. Peeraully, M.R., Jenkins, J.R., Trayhurn, P. Am. J. Physiol. Endocrinol. Metab. (2004) [Pubmed]
WikiGenes - Universities