The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Mechanisms of secondary hyperparathyroidism.

Small decreases in serum Ca(2+) and more prolonged increases in serum phosphate (P(i)) stimulate the parathyroid (PT) to secrete parathyroid hormone ( PTH), and 1,25(OH)(2)D(3) decreases PTH synthesis and secretion. A prolonged decrease in serum Ca(2+) and 1,25(OH)(2)D(3), or increase in serum P(i), such as in patients with chronic renal failure, leads to the appropriate secondary increase in serum PTH. This secondary hyperparathyroidism involves increases in PTH gene expression, synthesis, and secretion, and if chronic, to proliferation of the PT cells. Low serum Ca(2+) leads to an increase in PTH secretion, PTH mRNA stability, and PT cell proliferation. P(i) also regulates the PT in a similar manner. The effect of Ca(2+) on the PT is mediated by a membrane Ca(2+) receptor. 1,25(OH)(2)D(3) decreases PTH gene transcription. Ca(2+) and P(i) regulate the PTH gene posttranscriptionally by regulating the binding of PT cytosolic proteins, trans factors, to a defined cis sequence in the PTH mRNA 3'-untranslated region, thereby determining the stability of the transcript. PT trans factors and cis elements have been defined.[1]


  1. Mechanisms of secondary hyperparathyroidism. Silver, J., Kilav, R., Naveh-Many, T. Am. J. Physiol. Renal Physiol. (2002) [Pubmed]
WikiGenes - Universities