The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Reactions of nitrogen oxides with heme models. Characterization of NO and NO2 dissociation from Fe(TPP)(NO2)(NO) by flash photolysis and rapid dilution techniques: Fe(TPP)(NO2) as an unstable intermediate.

Described are studies directed toward elucidating the controversial chemistry relating to the solution phase reactions of nitric oxide with the iron(II) porphyrin complex Fe(TPP)(NO) (1, TPP = meso-tetraphenylporphinato2-). The only reaction observable with clean NO is the formation of the diamagnetic dinitrosyl species Fe(TPP)(NO)2 (2), and this is seen only at low temperatures (K(1) < 3 M(-1) at ambient temperature). However, 1 does readily react reversibly with N2O3 in the presence of excess NO to give the nitro nitrosyl complex Fe(TPP)(NO2)(NO) (3), suggesting that previous claims that 1 promotes NO disproportionation to give 3 may have been compromised by traces of air in the nitric oxide sources. It is also noted that 3 undergoes reversible loss of NO to give the elusive nitro species Fe(TPP)(NO2) (4), which has been implicated as a powerful oxygen atom transfer agent in reactions with various substrates. Furthermore, in the presence of excess NO2, the latter undergoes oxidation to the stable nitrato analogue Fe(TPP)(NO3) (5). Owing to such reactivity of Fe(TPP)(NO2), flash photolysis and stopped-flow kinetics rather than static techniques were necessary for the accurate measurement of dissociation equilibria characteristic of Fe(TPP)(NO2)(NO) in 298 K toluene solution. Flash photolysis of 3 resulted in competitive NO2 and NO dissociation to give Fe(TPP)(NO) and Fe(TPP)(NO2), respectively. The rate constant for the reaction of 1 with N2O3 to generate Fe(TPP)(NO2)(NO) was determined to be 1.8 x 10(6) M(-1) s(-1), and that for the NO reaction with 4 was similarly determined to be 4.2 x 10(5) M(-1) s(-1). Stopped-flow rapid dilution techniques were used to determine the rate constant for NO dissociation from 3 as 2.6 s(-1). The rapid dilution experiments also demonstrated that Fe(TPP)(NO2) readily undergoes further oxidation to give Fe(TPP)(NO3). The mechanistic implications of these observations are discussed, and it is suggested that NO2 liberated spontaneously from Fe(P)(NO2) may play a role in an important oxidative process involving this elusive species.[1]

References

 
WikiGenes - Universities