The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

nitric oxide     nitric oxide

Synonyms: Oxide, Nitric, Monoxide, Nitrogen, Mononitrogen monoxide, Monoxide, Mononitrogen, Endogenous Nitrate Vasodilator, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of nitric oxide

 

Psychiatry related information on nitric oxide

 

High impact information on nitric oxide

  • These data suggest that post-translational modification of sulfhydryl groups by a nitrogen monoxide (likely to be NO+) alters the synaptic protein interactions that regulate neurotransmitter release and synaptic plasticity [8].
  • Nitrogen monoxide (NO) plays a role in the cytotoxic mechanisms of activated macrophages against tumor cells by inducing iron (Fe) release [9].
  • Here we show that sickle cell Hb variant S (HbS) is deficient both in the intramolecular transfer of NO from heme iron (iron nitrosyl, FeNO) to cysteine thiol (S-nitrosothiol, SNO) that subserves bioactivation, and in transfer of the NO moiety from S-nitrosohemoglobin (SNO-HbS) to the RBC membrane [10].
  • Thus, bioavailability of NO scavengers at sites of inflammation may play an essential role in up-regulation of the catalytic activity of iNOS, by preventing the catalytic activity inhibition that is attributed to nitrosyl complex formation [11].
  • Past studies using rapid-reaction kinetics demonstrated that both the formation of a six-coordinate intermediate and the conversion of the intermediate to the activated five-coordinate nitrosyl complex depended on the concentration of NO [12].
 

Chemical compound and disease context of nitric oxide

 

Biological context of nitric oxide

 

Anatomical context of nitric oxide

  • Because modification of plasma albumin on tyrosine residues generates nitrated albumin (NOA) that may function as a mechanism of nitrogen monoxide clearance from microcirculation, we investigated biochemicaly and morphologically the cell surface binding and the transendothelial transport of NOA [23].
  • Myeloperoxidase and inducible nitric-oxide synthase are both stored in and secreted from the primary granules of activated leukocytes, and nitric oxide (nitrogen monoxide; NO) reacts with the iron center of hemeproteins at near diffusion-controlled rates [24].
  • In the L1210 cells cultured with activated macrophages, we detected a signal typical of nitrosyl-iron-sulfur complexes, with g values of 2.041 and 2.015 [25].
  • Thiol cross-linking and NAD+ hydrolysis can be achieved by addition of peroxynitrite (ONOO-), the product of the reaction between superoxide (O2-) and nitric oxide (nitrogen monoxide, NO*) to mitochondria [26].
  • We found that nitrosyl complex formation in red blood cells and liver was inhibited by treatment with NG-mono-methyl-L-arginine, suggesting enzymatic biosynthesis of .NO [27].
 

Associations of nitric oxide with other chemical compounds

  • The N18O isotope shift data indicate that the widely accepted assignment of the Fe(II)--NO stretching vibration at approximately equal to 554 cm-1 in ferrous nitrosyl Mb/HbA is incorrect; instead, we assign it to the Fe(II)--N--O bending mode [28].
  • Comparison of the hyperfine structure of the signal from cells treated with L-arginine with terminal guanidino nitrogen atoms of natural abundance N14 atoms or labeled with N15 atoms showed that the nitrosyl group in this paramagnetic species arises from one of these two atoms [29].
  • Catalysis of nitrosyl transfer reactions by a dissimilatory nitrite reductase (cytochrome c,d1) [3].
  • Electron spin resonance study of the role of NO . catalase in the activation of guanylate cyclase by NaN3 and NH2OH. Modulation of enzyme responses by heme proteins and their nitrosyl derivatives [30].
  • For myoglobins containing a distal histidine, the nitrosyl ESR spectra do not exhibit superhyperfine splitting until near liquid helium temperatures (Yoshimura, T., Ozaki, T., Shintani, Y., and Watanabe, H. (1979) Arch. Biochem. Biophys. 193, 301-313) [31].
 

Gene context of nitric oxide

 

Analytical, diagnostic and therapeutic context of nitric oxide

References

  1. The effect of redox-related species of nitrogen monoxide on transferrin and iron uptake and cellular proliferation of erythroleukemia (K562) cells. Richardson, D.R., Neumannova, V., Nagy, E., Ponka, P. Blood (1995) [Pubmed]
  2. The complex role of nitric oxide in the pathophysiology of focal cerebral ischemia. Dalkara, T., Moskowitz, M.A. Brain Pathol. (1994) [Pubmed]
  3. Catalysis of nitrosyl transfer reactions by a dissimilatory nitrite reductase (cytochrome c,d1). Kim, C.H., Hollocher, T.C. J. Biol. Chem. (1984) [Pubmed]
  4. Abnormal metabolic fate of nitric oxide in Type I diabetes mellitus. Milsom, A.B., Jones, C.J., Goodfellow, J., Frenneaux, M.P., Peters, J.R., James, P.E. Diabetologia (2002) [Pubmed]
  5. Intragastric generation of antimicrobial nitrogen oxides from saliva-Physiological and therapeutic considerations. Bj??rne, H., Weitzberg, E., Lundberg, J.O. Free Radic. Biol. Med. (2006) [Pubmed]
  6. Alterations in nitrogen monoxide-synthesizing cortical neurons in amyotrophic lateral sclerosis with dementia. Kuljis, R.O., Schelper, R.L. J. Neuropathol. Exp. Neurol. (1996) [Pubmed]
  7. Nitric oxide production in newborns under phototherapy. Ergenekon, E., Gücüyener, K., Dursun, H., Erbaş, D., Oztürk, G., Koç, E., Atalay, Y. Nitric Oxide (2002) [Pubmed]
  8. Nitric oxide modulates synaptic vesicle docking fusion reactions. Meffert, M.K., Calakos, N.C., Scheller, R.H., Schulman, H. Neuron (1996) [Pubmed]
  9. Nitrogen monoxide (NO)-mediated iron release from cells is linked to NO-induced glutathione efflux via multidrug resistance-associated protein 1. Watts, R.N., Hawkins, C., Ponka, P., Richardson, D.R. Proc. Natl. Acad. Sci. U.S.A. (2006) [Pubmed]
  10. Impaired vasodilation by red blood cells in sickle cell disease. Pawloski, J.R., Hess, D.T., Stamler, J.S. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  11. Myeloperoxidase up-regulates the catalytic activity of inducible nitric oxide synthase by preventing nitric oxide feedback inhibition. Galijasevic, S., Saed, G.M., Diamond, M.P., Abu-Soud, H.M. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  12. Revisiting the kinetics of nitric oxide (NO) binding to soluble guanylate cyclase: the simple NO-binding model is incorrect. Ballou, D.P., Zhao, Y., Brandish, P.E., Marletta, M.A. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  13. Detection of nitrosyl hemoglobin in venous blood in the treatment of sickle cell anemia with hydroxyurea. Glover, R.E., Ivy, E.D., Orringer, E.P., Maeda, H., Mason, R.P. Mol. Pharmacol. (1999) [Pubmed]
  14. Stimulation of cyclic GMP production via a nitrosyl factor in sensory neuronal cultures by algesic or inflammatory agents. Bauer, M.B., Murphy, S., Gebhart, G.F. J. Neurochem. (1995) [Pubmed]
  15. Evidence for an iron center in the ammonia monooxygenase from Nitrosomonas europaea. Zahn, J.A., Arciero, D.M., Hooper, A.B., DiSpirito, A.A. FEBS Lett. (1996) [Pubmed]
  16. Endotoxin-induced oxidative stress in the rat small intestine: role of nitric oxide. Chamulitrat, W., Skrepnik, N.V., Spitzer, J.J. Shock (1996) [Pubmed]
  17. Ruthenium nitrosyl complexes: toxicity to Escherichia coli and yeasts and uptake by marine bacteria. Gibson, J.F., Poole, R.K., Hughes, M.N., Rees, J.F. Arch. Environ. Contam. Toxicol. (1986) [Pubmed]
  18. Nitrogen monoxide-mediated control of ferritin synthesis: implications for macrophage iron homeostasis. Kim, S., Ponka, P. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  19. Vasoactivity of S-nitrosohemoglobin: role of oxygen, heme, and NO oxidation states. Crawford, J.H., White, C.R., Patel, R.P. Blood (2003) [Pubmed]
  20. Oxidation and nitrosation in the nitrogen monoxide/superoxide system. Daiber, A., Frein, D., Namgaladze, D., Ullrich, V. J. Biol. Chem. (2002) [Pubmed]
  21. Spectroscopic studies of isopenicillin N synthase. A mononuclear nonheme Fe2+ oxidase with metal coordination sites for small molecules and substrate. Chen, V.J., Orville, A.M., Harpel, M.R., Frolik, C.A., Surerus, K.K., Münck, E., Lipscomb, J.D. J. Biol. Chem. (1989) [Pubmed]
  22. Nitrogen monoxide (no) and glucose: unexpected links between energy metabolism and no-mediated iron mobilization from cells. Watts, R.N., Richardson, D.R. J. Biol. Chem. (2001) [Pubmed]
  23. Transport of nitrated albumin across continuous vascular endothelium. Predescu, D., Predescu, S., Malik, A.B. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  24. Nitric oxide modulates the catalytic activity of myeloperoxidase. Abu-Soud, H.M., Hazen, S.L. J. Biol. Chem. (2000) [Pubmed]
  25. Generation of EPR-detectable nitrosyl-iron complexes in tumor target cells cocultured with activated macrophages. Drapier, J.C., Pellat, C., Henry, Y. J. Biol. Chem. (1991) [Pubmed]
  26. Peroxynitrite formed by mitochondrial NO synthase promotes mitochondrial Ca2+ release. Bringold, U., Ghafourifar, P., Richter, C. Free Radic. Biol. Med. (2000) [Pubmed]
  27. Nitric oxide production during endotoxic shock in carbon tetrachloride-treated rats. Chamulitrat, W., Jordan, S.J., Mason, R.P. Mol. Pharmacol. (1994) [Pubmed]
  28. Resonance Raman studies of nitric oxide binding to ferric and ferrous hemoproteins: detection of Fe(III)--NO stretching, Fe(III)--N--O bending, and Fe(II)--N--O bending vibrations. Benko, B., Yu, N.T. Proc. Natl. Acad. Sci. U.S.A. (1983) [Pubmed]
  29. EPR demonstration of iron-nitrosyl complex formation by cytotoxic activated macrophages. Lancaster, J.R., Hibbs, J.B. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  30. Electron spin resonance study of the role of NO . catalase in the activation of guanylate cyclase by NaN3 and NH2OH. Modulation of enzyme responses by heme proteins and their nitrosyl derivatives. Craven, P.A., DeRubertis, F.R., Pratt, D.W. J. Biol. Chem. (1979) [Pubmed]
  31. Interaction of ligands with the distal glutamine in elephant myoglobin. Bartnicki, D.E., Mizukami, H., Romero-Herrera, A.E. J. Biol. Chem. (1983) [Pubmed]
  32. The effect of intracellular iron concentration and nitrogen monoxide on Nramp2 expression and non-transferrin-bound iron uptake. Wardrop, S.L., Richardson, D.R. Eur. J. Biochem. (1999) [Pubmed]
  33. S-nitrosation of thioredoxin in the nitrogen monoxide/superoxide system activates apoptosis signal-regulating kinase 1. Yasinska, I.M., Kozhukhar, A.V., Sumbayev, V.V. Arch. Biochem. Biophys. (2004) [Pubmed]
  34. Oxidation of the ketoxime acetoxime to nitric oxide by oxygen radical-generating systems. Caro, A.A., Cederbaum, A.I., Stoyanovsky, D.A. Nitric Oxide (2001) [Pubmed]
  35. Regulation of nitric oxide production by murine peritoneal macrophages treated in vitro with chemokine monocyte chemoattractant protein 1. Biswas, S.K., Sodhi, A., Paul, S. Nitric Oxide (2001) [Pubmed]
  36. Bio-normalizer modulates interferon-gamma-induced nitric oxide production in the mouse macrophage cell line RAW 264.7. Kobuchi, H., Packer, L. Biochem. Mol. Biol. Int. (1997) [Pubmed]
  37. Reactions of nitrogen oxides with heme models. Spectral and kinetic study of nitric oxide reactions with solid and solute Fe(III)(TPP)(NO3). Kurtikyan, T.S., Gulyan, G.M., Martirosyan, G.G., Lim, M.D., Ford, P.C. J. Am. Chem. Soc. (2005) [Pubmed]
  38. Dissociation energies and charge distribution of the Co-NO bond for nitrosyl-alpha,beta,gamma,delta-tetraphenylporphinatocobalt(II) and nitrosyl-alpha,beta,gamma,delta-tetraphenylporphinatocobalt(III) in benzonitrile solution. Zhu, X.Q., Li, Q., Hao, W.F., Cheng, J.P. J. Am. Chem. Soc. (2002) [Pubmed]
  39. The early phase of glucose-stimulated insulin secretion requires nitric oxide. Spinas, G.A., Laffranchi, R., Francoys, I., David, I., Richter, C., Reinecke, M. Diabetologia (1998) [Pubmed]
  40. Reactions of nitrogen oxides with heme models. Characterization of NO and NO2 dissociation from Fe(TPP)(NO2)(NO) by flash photolysis and rapid dilution techniques: Fe(TPP)(NO2) as an unstable intermediate. Lim, M.D., Lorkovic, I.M., Wedeking, K., Zanella, A.W., Works, C.F., Massick, S.M., Ford, P.C. J. Am. Chem. Soc. (2002) [Pubmed]
 
WikiGenes - Universities