Characterization of an acyltransferase capable of synthesizing benzylbenzoate and other volatile esters in flowers and damaged leaves of Clarkia breweri.
A cDNA encoding a protein with 456 amino acids whose sequence shows considerable similarity to plant acyltransferases was identified among 750 Clarkia breweri flower expressed sequence tags. The cDNA was expressed in Escherichia coli, and the protein produced was shown to encode the enzyme benzoyl-coenzyme A (CoA):benzyl alcohol benzoyl transferase (BEBT). BEBT catalyzes the formation of benzylbenzoate, a minor constituent of the C. breweri floral aroma, but it also has activity with a number of other alcohols and acyl CoAs. The BEBT gene is expressed in different parts of the flowers with maximal RNA transcript levels in the stigma, and no expression was observed in the leaves under normal conditions. However, BEBT expression was induced in damaged leaves, reaching a maximum 6 h after damage occurred. We also show here that a closely related tobacco (Nicotiana tabacum) gene previously shown to be induced in leaves after being challenged by phytopathogenic bacteria also has BEBT activity, whereas the most similar protein to BEBT in the Arabidopsis proteome does not use benzoyl CoA as a substrate and instead can use acetyl CoA to catalyze the formation of cis-3-hexen-1-yl acetate, a green-leaf volatile.[1]References
- Characterization of an acyltransferase capable of synthesizing benzylbenzoate and other volatile esters in flowers and damaged leaves of Clarkia breweri. D'Auria, J.C., Chen, F., Pichersky, E. Plant Physiol. (2002) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg