The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Expressed Sequence Tags

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Expressed Sequence Tags

 

High impact information on Expressed Sequence Tags

  • Sequence and expression analysis of more than 1,200 subtracted cDNA fragments revealed transcriptional stimulation or repression of 104 ESTs, 45 novel sequences and 244 known genes in HRAS- transformed cells compared with normal cells [6].
  • More than 1.6 million human EST sequences have been deposited in public databases, making it difficult to identify ESTs that represent new genes [7].
  • We initially identified the human PAHX and mouse Pahx genes as expressed sequence tags (ESTs) capable of encoding PTS2 proteins [8].
  • Human PEX1 has been identified by computer-based 'homology probing' using the ScPex1p sequence to screen databases of expressed sequence tags (dbEST) for human cDNA clones [9].
  • We identified a putative human orthologue of ScPEX12 by screening the database of expressed sequence tags for cDNAs capable of encoding a protein similar to yeast Pex12p [10].
 

Chemical compound and disease context of Expressed Sequence Tags

  • Among six genes whose induction by hypoxia was newly defined in this way, three were of known function, encoding the glucose transporter isoform 3 (Glut-3), adenylate kinase isoenzyme 3 (AK-3), and tissue factor, two were expressed sequence tags (ESTs), and one corresponded to a new sequence [11].
  • A number of these and other genes and ESTs were detectable within the liver only after APAP treatment suggesting their potential importance in propagating or preventing further toxicity [12].
 

Biological context of Expressed Sequence Tags

 

Anatomical context of Expressed Sequence Tags

 

Associations of Expressed Sequence Tags with chemical compounds

  • We identified an expressed sequence tag clone that shared regions of similarity with acyl CoA:cholesterol acyltransferase, an enzyme that also uses fatty acyl CoA as a substrate [19].
  • The five known genes encoding casein kinase Ialpha, the alpha subunit of retinal rod cGMP phosphodiesterase, the regulator of mitotic-spindle assembly, adrenergic receptor beta2, and the diastrophic dysplasia sulfate-transporter gene, as well as the 38 expressed-sequence tags mapped within the critical region, are not obvious candidates [23].
  • Herein, we report that DARPP-32 (dopamine and cAMP-regulated phosphoprotein of M(r) 32,000) is the target gene for overexpression of expressed sequence tag AA552509 [24].
  • Of the 5475 ESTs obtained, approximately 4% encoded cathepsin K, a novel cysteine protease homologous to cathepsins S and L; ESTs for other cathepsins were rare [25].
  • Interrogation of the public expressed sequence tag (EST) data base with the sequence of preproaprotinin identified ESTs encoding two potential new members of the Kunitz family of serine protease inhibitors [26].
 

Gene context of Expressed Sequence Tags

 

Analytical, diagnostic and therapeutic context of Expressed Sequence Tags

References

  1. Informatic selection of a neural crest-melanocyte cDNA set for microarray analysis. Loftus, S.K., Chen, Y., Gooden, G., Ryan, J.F., Birznieks, G., Hilliard, M., Baxevanis, A.D., Bittner, M., Meltzer, P., Trent, J., Pavan, W. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  2. High-resolution mapping of the 11q13 amplicon and identification of a gene, TAOS1, that is amplified and overexpressed in oral cancer cells. Huang, X., Gollin, S.M., Raja, S., Godfrey, T.E. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  3. XAGE-1, a new gene that is frequently expressed in Ewing's sarcoma. Liu, X.F., Helman, L.J., Yeung, C., Bera, T.K., Lee, B., Pastan, I. Cancer Res. (2000) [Pubmed]
  4. The tumor suppressor hSNF5/INI1 modulates cell growth and actin cytoskeleton organization. Medjkane, S., Novikov, E., Versteege, I., Delattre, O. Cancer Res. (2004) [Pubmed]
  5. PCOLCE2 encodes a functional procollagen C-proteinase enhancer (PCPE2) that is a collagen-binding protein differing in distribution of expression and post-translational modification from the previously described PCPE1. Steiglitz, B.M., Keene, D.R., Greenspan, D.S. J. Biol. Chem. (2002) [Pubmed]
  6. A genome-wide survey of RAS transformation targets. Zuber, J., Tchernitsa, O.I., Hinzmann, B., Schmitz, A.C., Grips, M., Hellriegel, M., Sers, C., Rosenthal, A., Schäfer, R. Nat. Genet. (2000) [Pubmed]
  7. More than 1,000 putative new human signalling proteins revealed by EST data mining. Schultz, J., Doerks, T., Ponting, C.P., Copley, R.R., Bork, P. Nat. Genet. (2000) [Pubmed]
  8. Identification of PAHX, a Refsum disease gene. Mihalik, S.J., Morrell, J.C., Kim, D., Sacksteder, K.A., Watkins, P.A., Gould, S.J. Nat. Genet. (1997) [Pubmed]
  9. Human PEX1 is mutated in complementation group 1 of the peroxisome biogenesis disorders. Portsteffen, H., Beyer, A., Becker, E., Epplen, C., Pawlak, A., Kunau, W.H., Dodt, G. Nat. Genet. (1997) [Pubmed]
  10. Isolation of the human PEX12 gene, mutated in group 3 of the peroxisome biogenesis disorders. Chang, C.C., Lee, W.H., Moser, H., Valle, D., Gould, S.J. Nat. Genet. (1997) [Pubmed]
  11. Identification of hypoxically inducible mRNAs in HeLa cells using differential-display PCR. Role of hypoxia-inducible factor-1. O'Rourke, J.F., Pugh, C.W., Bartlett, S.M., Ratcliffe, P.J. Eur. J. Biochem. (1996) [Pubmed]
  12. Expression profiling of acetaminophen liver toxicity in mice using microarray technology. Reilly, T.P., Bourdi, M., Brady, J.N., Pise-Masison, C.A., Radonovich, M.F., George, J.W., Pohl, L.R. Biochem. Biophys. Res. Commun. (2001) [Pubmed]
  13. The EXT2 multiple exostoses gene defines a family of putative tumour suppressor genes. Stickens, D., Clines, G., Burbee, D., Ramos, P., Thomas, S., Hogue, D., Hecht, J.T., Lovett, M., Evans, G.A. Nat. Genet. (1996) [Pubmed]
  14. A genome-based resource for molecular cardiovascular medicine: toward a compendium of cardiovascular genes. Hwang, D.M., Dempsey, A.A., Wang, R.X., Rezvani, M., Barrans, J.D., Dai, K.S., Wang, H.Y., Ma, H., Cukerman, E., Liu, Y.Q., Gu, J.R., Zhang, J.H., Tsui, S.K., Waye, M.M., Fung, K.P., Lee, C.Y., Liew, C.C. Circulation (1997) [Pubmed]
  15. Origin and evolutionary process of the CNS elucidated by comparative genomics analysis of planarian ESTs. Mineta, K., Nakazawa, M., Cebria, F., Ikeo, K., Agata, K., Gojobori, T. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  16. Three proteins define a class of human histone deacetylases related to yeast Hda1p. Grozinger, C.M., Hassig, C.A., Schreiber, S.L. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  17. A complex of the IL-1 homologue IL-1F7b and IL-18-binding protein reduces IL-18 activity. Bufler, P., Azam, T., Gamboni-Robertson, F., Reznikov, L.L., Kumar, S., Dinarello, C.A., Kim, S.H. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  18. Identification of genes expressed in human CD34(+) hematopoietic stem/progenitor cells by expressed sequence tags and efficient full-length cDNA cloning. Mao, M., Fu, G., Wu, J.S., Zhang, Q.H., Zhou, J., Kan, L.X., Huang, Q.H., He, K.L., Gu, B.W., Han, Z.G., Shen, Y., Gu, J., Yu, Y.P., Xu, S.H., Wang, Y.X., Chen, S.J., Chen, Z. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  19. Identification of a gene encoding an acyl CoA:diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis. Cases, S., Smith, S.J., Zheng, Y.W., Myers, H.M., Lear, S.R., Sande, E., Novak, S., Collins, C., Welch, C.B., Lusis, A.J., Erickson, S.K., Farese, R.V. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  20. Identification of a novel mammary-restricted cytochrome P450, CYP4Z1, with overexpression in breast carcinoma. Rieger, M.A., Ebner, R., Bell, D.R., Kiessling, A., Rohayem, J., Schmitz, M., Temme, A., Rieber, E.P., Weigle, B. Cancer Res. (2004) [Pubmed]
  21. Cloning and characterization of N4WBP5A, an inducible, cyclosporine-sensitive, Nedd4-binding protein in human T lymphocytes. Cristillo, A.D., Nie, L., Macri, M.J., Bierer, B.E. J. Biol. Chem. (2003) [Pubmed]
  22. Cloning and biological activity of epigen, a novel member of the epidermal growth factor superfamily. Strachan, L., Murison, J.G., Prestidge, R.L., Sleeman, M.A., Watson, J.D., Kumble, K.D. J. Biol. Chem. (2001) [Pubmed]
  23. Localization of the Netherton syndrome gene to chromosome 5q32, by linkage analysis and homozygosity mapping. Chavanas, S., Garner, C., Bodemer, C., Ali, M., Teillac, D.H., Wilkinson, J., Bonafé, J.L., Paradisi, M., Kelsell, D.P., Ansai, S., Mitsuhashi, Y., Larrègue, M., Leigh, I.M., Harper, J.I., Taïeb, A., Prost, Y., Cardon, L.R., Hovnanian, A. Am. J. Hum. Genet. (2000) [Pubmed]
  24. Gastric cancers overexpress DARPP-32 and a novel isoform, t-DARPP. El-Rifai, W., Smith, M.F., Li, G., Beckler, A., Carl, V.S., Montgomery, E., Knuutila, S., Moskaluk, C.A., Frierson, H.F., Powell, S.M. Cancer Res. (2002) [Pubmed]
  25. Cathepsin K, but not cathepsins B, L, or S, is abundantly expressed in human osteoclasts. Drake, F.H., Dodds, R.A., James, I.E., Connor, J.R., Debouck, C., Richardson, S., Lee-Rykaczewski, E., Coleman, L., Rieman, D., Barthlow, R., Hastings, G., Gowen, M. J. Biol. Chem. (1996) [Pubmed]
  26. Identification and cloning of human placental bikunin, a novel serine protease inhibitor containing two Kunitz domains. Marlor, C.W., Delaria, K.A., Davis, G., Muller, D.K., Greve, J.M., Tamburini, P.P. J. Biol. Chem. (1997) [Pubmed]
  27. Characterization of MOAT-C and MOAT-D, new members of the MRP/cMOAT subfamily of transporter proteins. Belinsky, M.G., Bain, L.J., Balsara, B.B., Testa, J.R., Kruh, G.D. J. Natl. Cancer Inst. (1998) [Pubmed]
  28. Characterization of the human homologue of the yeast spc98p and its association with gamma-tubulin. Tassin, A.M., Celati, C., Moudjou, M., Bornens, M. J. Cell Biol. (1998) [Pubmed]
  29. Characterization of a human RPD3 ortholog, HDAC3. Emiliani, S., Fischle, W., Van Lint, C., Al-Abed, Y., Verdin, E. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  30. Mutation in PEX16 is causal in the peroxisome-deficient Zellweger syndrome of complementation group D. Honsho, M., Tamura, S., Shimozawa, N., Suzuki, Y., Kondo, N., Fujiki, Y. Am. J. Hum. Genet. (1998) [Pubmed]
  31. The gene encoding hydroxypyruvate reductase (GRHPR) is mutated in patients with primary hyperoxaluria type II. Cramer, S.D., Ferree, P.M., Lin, K., Milliner, D.S., Holmes, R.P. Hum. Mol. Genet. (1999) [Pubmed]
  32. Global identification of target genes regulated by APETALA3 and PISTILLATA floral homeotic gene action. Zik, M., Irish, V.F. Plant Cell (2003) [Pubmed]
  33. Bcl-X(L) affects Ca(2+) homeostasis by altering expression of inositol 1,4,5-trisphosphate receptors. Li, C., Fox, C.J., Master, S.R., Bindokas, V.P., Chodosh, L.A., Thompson, C.B. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  34. Generation of a high-density rat EST map. Scheetz, T.E., Raymond, M.R., Nishimura, D.Y., McClain, A., Roberts, C., Birkett, C., Gardiner, J., Zhang, J., Butters, N., Sun, C., Kwitek-Black, A., Jacob, H., Casavant, T.L., Soares, M.B., Sheffield, V.C. Genome Res. (2001) [Pubmed]
  35. Mycobacterium bovis Bacillus Calmette-Guerin and its cell wall complex induce a novel lysosomal membrane protein, SIMPLE, that bridges the missing link between lipopolysaccharide and p53-inducible gene, LITAF(PIG7), and estrogen-inducible gene, EET-1. Moriwaki, Y., Begum, N.A., Kobayashi, M., Matsumoto, M., Toyoshima, K., Seya, T. J. Biol. Chem. (2001) [Pubmed]
  36. Identification, characterization, and crystal structure of the Omega class glutathione transferases. Board, P.G., Coggan, M., Chelvanayagam, G., Easteal, S., Jermiin, L.S., Schulte, G.K., Danley, D.E., Hoth, L.R., Griffor, M.C., Kamath, A.V., Rosner, M.H., Chrunyk, B.A., Perregaux, D.E., Gabel, C.A., Geoghegan, K.F., Pandit, J. J. Biol. Chem. (2000) [Pubmed]
 
WikiGenes - Universities