The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Comparative mutagenesis of the C8-guanine adducts of 1-nitropyrene and 1,6- and 1,8-dinitropyrene in a CpG repeat sequence. A slipped frameshift intermediate model for dinucleotide deletion.

In the Ames Salmonella typhimurium reversion assay 1,6- and 1,8-dinitropyrenes (1,6- and 1,8-DNPs) are much more potent mutagens than 1-nitropyrene (1-NP). Genetic experiments established that certain differences in the metabolism of the DNPs, which in turn result in increased DNA adduction, play a role. It remained unclear, however, if the DNP adducts, N-(guanin-8-yl)-1-amino-6 ()-nitropyrene (Gua-C8-1,6-ANP and Gua-C8-1,8-ANP), which contain a nitro group on the pyrene ring covalently linked to the guanine C8, are more mutagenic than the major 1-NP adduct, N-(guanin-8-yl)-1-aminopyrene (Gua-C8-AP). In order to address this, we have compared the mutation frequency of the three guanine C8 adducts, Gua-C8-AP, Gua-C8-1,6-ANP, and Gua-C8-1,8-ANP in a CGCG*CG sequence. Single-stranded M13mp7L2 vectors containing these adducts and a control were constructed and replicated in Escherichia coli. A remarkable difference in the induced CpG deletion frequency between these adducts was noted. In repair-competent cells the 1-NP adduct induced 1.7% CpG deletions without SOS, whereas the 1,6- and 1,8-DNP adducts induced 6.8 and 10.0% two-base deletions, respectively. With SOS, CpG deletions increased up to 1.9, 11.1, and 15.1% by 1-NP, 1,6-, and 1,8-DNP adducts, respectively. This result unequivocally established that DNP adducts are more mutagenic than the 1-NP adduct in the repetitive CpG sequence. In each case the mutation frequency was significantly increased in a mutS strain, which is impaired in methyl-directed mismatch repair, and a dnaQ strain, which carries a defect in proofreading activity of the DNA polymerase III. Modeling studies showed that the nitro group on the pyrene ring at the 8-position can provide additional stabilization to the two-nucleotide extrahelical loop in the promutagenic slipped frameshift intermediate through its added hydrogen-bonding capability. This could account for the increase in CpG deletions in the M13 vector with the nitro-containing adducts compared with the Gua-C8-AP adduct itself.[1]


WikiGenes - Universities