The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Checkpoint kinase 2 (Chk2) monomers or dimers phosphorylate Cdc25C after DNA damage regardless of threonine 68 phosphorylation.

We have purified and characterized human Chk2 both from baculovirus-infected insect cells and from either untreated or DNA damage-stressed human HCT116 cells. Chk2 from unstressed human cells is largely monomeric and inactive in phosphorylating its substrate, Cdc25C. It is also unphosphorylated at Thr-68, a site that is the target of the ataxia telangiectasia-mutated protein kinase. After treatment of HCT116 cells with a radiomimetic compound neocarzinostatin, active Chk2 exists as stable Thr-68-phosphorylated dimers as well as interconvertable Thr-68-unphosphorylated monomers and dimers. Interestingly, Chk2 from insect cells behaves by all criteria tested like active Chk2 from neocarzinostatin-treated HCT116 cells. Based on Stokes radius and sedimentation coefficient values, Chk2 monomers and dimers have asymmetric rather than globular shapes. Both Thr-68-phosphorylated and Thr-68-unphosphorylated forms of active Chk2 are capable of phosphorylating Cdc25C. Thus, although phosphorylation of Thr-68 may be required for initial oligomerization and activation of Chk2, it is not needed for maintenance of dimerization or kinase activity.[1]

References

 
WikiGenes - Universities