The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Kajaku     ethyl2-amino-5-ethyl- thiophene-3-carboxylate

Synonyms: QC-856, AG-F-57240, SureCN1973680, ALBB-001668, NSC-159633, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Neocarzinostatin

 

High impact information on Neocarzinostatin

 

Chemical compound and disease context of Neocarzinostatin

 

Biological context of Neocarzinostatin

 

Anatomical context of Neocarzinostatin

 

Associations of Neocarzinostatin with other chemical compounds

 

Gene context of Neocarzinostatin

  • The phosphorylation-dephosphorylation cycle of JNK and p38 by NCS was attenuated in A-T cells [30].
  • Addition of the radiomimetic agent neocarzinostatin for 4 h, however, induced a significant increase in IGF-IR levels in cells without ATM function [31].
  • Herein, we demonstrate that the chemotherapeutic enediyne antibiotic neocarzinostatin induced Rad51, but not NBS1, nuclear focus formation in a cell- cycle-dependent manner [32].
  • RT-PCR analysis revealed that the expressions of fusion-competent myoblast-specific genes lmd, sns, and del were induced in Schneider cells upon treatment with NCS or HU, whereas expressions of three founder cell-specific genes, duf, ants, and rols, were undetectable [33].
  • After treatment of HCT116 cells with a radiomimetic compound neocarzinostatin, active Chk2 exists as stable Thr-68-phosphorylated dimers as well as interconvertable Thr-68-unphosphorylated monomers and dimers [34].
 

Analytical, diagnostic and therapeutic context of Neocarzinostatin

References

  1. In vitro inhibition of human leukemic cells (CCRF-CEM) by agarose-immobilized neocarzinostatin. Lazarus, H., Raso, V., Samy, T.S. Cancer Res. (1977) [Pubmed]
  2. Cellular hypersensitivity to neocarzinostatin in ataxia-telangiectasia skin fibroblasts. Shiloh, Y., Tabor, E., Becker, Y. Cancer Res. (1982) [Pubmed]
  3. Antitumor effects of SMANCS on rat mammary tumor induced by 7,12-dimethylbenz[a]anthracene. Kimoto, A., Konno, T., Kawaguchi, T., Miyauchi, Y., Maeda, H. Cancer Res. (1992) [Pubmed]
  4. Subcellular fate of protein antibiotic neocarzinostatin in culture of a lymphoid cell line from Burkitt's lymphoma. Maeda, H., Aikawa, S., Yamashita, A. Cancer Res. (1975) [Pubmed]
  5. Characterization of intracellular DNA strand breaks induced by neocarzinostatin in Escherichia coli cells. Boye, E., Köhnlein, W., Skarstad, K. Nucleic Acids Res. (1984) [Pubmed]
  6. Interaction of int protein with specific sites on lambda att DNA. Ross, W., Landy, A., Kikuchi, Y., Nash, H. Cell (1979) [Pubmed]
  7. Random components in mutagenesis. Foster, P.L., Eisenstadt, E., Cairns, J. Nature (1982) [Pubmed]
  8. Crystal structure of neocarzinostatin, an antitumor protein-chromophore complex. Kim, K.H., Kwon, B.M., Myers, A.G., Rees, D.C. Science (1993) [Pubmed]
  9. Targeted enhancement of the biological activity of the antineoplastic agent, neocarzinostatin. Studies in murine neuroblastoma cells. Schor, N.F. J. Clin. Invest. (1992) [Pubmed]
  10. Facilitated internalization of neocarzinostatin and its lipophilic polymer conjugate, SMANCS, into cytosol in acidic pH. Oda, T., Sato, F., Maeda, H. J. Natl. Cancer Inst. (1987) [Pubmed]
  11. Processing of 3'-Phosphoglycolate-terminated DNA Double Strand Breaks by Artemis Nuclease. Povirk, L.F., Zhou, T., Zhou, R., Cowan, M.J., Yannone, S.M. J. Biol. Chem. (2007) [Pubmed]
  12. Glutathione depletion greatly reduces neocarzinostatin cytotoxicity in Chinese hamster V79 cells. DeGraff, W.G., Russo, A., Mitchell, J.B. J. Biol. Chem. (1985) [Pubmed]
  13. Detection of neocarzinostatin chromophore-deoxyribose adducts as exonuclease-resistant sites in defined-sequence DNA. Povirk, L.F., Goldberg, I.H. Biochemistry (1985) [Pubmed]
  14. Assessment of preferential cleavage of an actively transcribed retroviral hybrid gene in murine cells by deoxyribonuclease I, bleomycin, neocarzinostatin, or ionizing radiation. Beckmann, R.P., Agostino, M.J., McHugh, M.M., Sigmund, R.D., Beerman, T.A. Biochemistry (1987) [Pubmed]
  15. Distribution and specificity of mutations induced by neocarzinostatin in the lacI gene of Escherichia coli. Foster, P.L., Eisenstadt, E. J. Bacteriol. (1983) [Pubmed]
  16. Nitroaromatic radiation sensitizers substitute for oxygen in neocarzinostatin-induced DNA damage. Kappen, L.S., Goldberg, I.H. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
  17. Sequence-specific interaction between the replication initiator protein of plasmid pT181 and its origin of replication. Koepsel, R.R., Murray, R.W., Khan, S.A. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  18. Human chronic lymphocytic leukemia B cells can escape DNA damage-induced apoptosis through the nonhomologous end-joining DNA repair pathway. Deriano, L., Guipaud, O., Merle-Béral, H., Binet, J.L., Ricoul, M., Potocki-Veronese, G., Favaudon, V., Maciorowski, Z., Muller, C., Salles, B., Sabatier, L., Delic, J. Blood (2005) [Pubmed]
  19. Induction and repair of DNA and chromosome damage by neocarzinostatin in quiescent normal human fibroblasts. Hittelman, W.N., Pollard, M. Cancer Res. (1982) [Pubmed]
  20. Neocarzinostatin-induced DNA strand scission and subsequent cell cycle traverse in HeLa S3 cells. Berry, D.E., Collins, J.M. Cancer Res. (1980) [Pubmed]
  21. Selective elimination of anti-DNA antibody-producing cells by antiidiotypic antibody conjugated with neocarzinostatin. Sasaki, T., Muryoi, T., Takai, O., Tamate, E., Ono, Y., Koide, Y., Ishida, N., Yoshinaga, K. J. Clin. Invest. (1986) [Pubmed]
  22. Roles of chromophore and apo-protein in neocarzinostatin action. Kappen, L.S., Napier, M.A., Goldberg, I.H. Proc. Natl. Acad. Sci. U.S.A. (1980) [Pubmed]
  23. Inhibition of ligand-independent cap formation of mouse lymphocytes and Raji cells by neocarzinostatin. Yahara, I., Iwashita, S., Ebina, T., Satake, M., Ishida, N. Cancer Res. (1979) [Pubmed]
  24. Potentiation of enediyne-induced apoptosis and differentiation by Bcl-2. Cortazzo, M., Schor, N.F. Cancer Res. (1996) [Pubmed]
  25. Sequence specific cleavage of DNA by the antitumor antibiotics neocarzinostatin and bleomycin. D'Andrea, A.D., Haseltine, W.A. Proc. Natl. Acad. Sci. U.S.A. (1978) [Pubmed]
  26. Kedarcidin chromophore: an enediyne that cleaves DNA in a sequence-specific manner. Zein, N., Colson, K.L., Leet, J.E., Schroeder, D.R., Solomon, W., Doyle, T.W., Casazza, A.M. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  27. Endonuclease-resistant apyrimidinic sites formed by neocarzinostatin at cytosine residues in DNA: evidence for a possible role in mutagenesis. Povirk, L.F., Goldberg, I.H. Proc. Natl. Acad. Sci. U.S.A. (1985) [Pubmed]
  28. Glutathione dependence of neocarzinostatin cytotoxicity and mutagenicity in Chinese hamster V-79 cells. DeGraff, W.G., Mitchell, J.B. Cancer Res. (1985) [Pubmed]
  29. Effects of caffeine on neocarzinostatin-induced inhibition of cell cycle traverse in HeLa-S3 cells. Iseki, S., Ebina, T., Ishida, N. Cancer Res. (1980) [Pubmed]
  30. ATM-dependent activation of the gene encoding MAP kinase phosphatase 5 by radiomimetic DNA damage. Bar-Shira, A., Rashi-Elkeles, S., Zlochover, L., Moyal, L., Smorodinsky, N.I., Seger, R., Shiloh, Y. Oncogene (2002) [Pubmed]
  31. Ataxia-telangiectasia mutated gene controls insulin-like growth factor I receptor gene expression in a deoxyribonucleic acid damage response pathway via mechanisms involving zinc-finger transcription factors Sp1 and WT1. Shahrabani-Gargir, L., Pandita, T.K., Werner, H. Endocrinology (2004) [Pubmed]
  32. Neocarzinostatin-induced Rad51 nuclear focus formation is cell cycle regulated and aberrant in AT cells. Yuan, S.S., Yang, Y.K., Chen, H.W., Chung, Y.F., Chang, H.L., Su, J.H. Toxicol. Appl. Pharmacol. (2003) [Pubmed]
  33. Induction of fusion-competent myoblast-specific gene expression during myogenic differentiation of Drosophila Schneider cells by DNA double-strand breaks or replication inhibition. Hossain, M.S., Kurokawa, K., Sekimizu, K. Biochim. Biophys. Acta (2005) [Pubmed]
  34. Checkpoint kinase 2 (Chk2) monomers or dimers phosphorylate Cdc25C after DNA damage regardless of threonine 68 phosphorylation. Ahn, J., Prives, C. J. Biol. Chem. (2002) [Pubmed]
  35. Radioimmunoassay of neocarzinostatin, an antitumor protein. Samy, T.S., Raso, V. Cancer Res. (1976) [Pubmed]
  36. Release of the neocarzinostatin chromophore from the holoprotein does not require major conformational change of the tertiary and secondary structures induced by trifluoroethanol. Sudhahar, G.C., Balamurugan, K., Chin, D.H. J. Biol. Chem. (2000) [Pubmed]
  37. Role of caspase 3-dependent Bcl-2 cleavage in potentiation of apoptosis by Bcl-2. Liang, Y., Nylander, K.D., Yan, C., Schor, N.F. Mol. Pharmacol. (2002) [Pubmed]
  38. Characterization of the denatured states distribution of neocarzinostatin by small-angle neutron scattering and differential scanning calorimetry. Russo, D., Durand, D., Calmettes, P., Desmadril, M. Biochemistry (2001) [Pubmed]
 
WikiGenes - Universities