The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

CCAAT/Enhancer binding proteins repress the leukemic phenotype of acute myeloid leukemia.

CCAAT/enhancer binding proteins (C/EBPs) are a family of factors that regulate cell growth and differentiation. These factors, particularly C/EBPalpha and C/EBPepsilon, have important roles in normal myelopoiesis. In addition, loss of C/ EBP activity appears to have a role in the pathogenesis of myeloid disorders including acute myeloid leukemia ( AML). Acute promyelocytic leukemia (APL) is a subtype of AML in which a role for C/EBPs has been postulated. In almost all cases of APL, a promyelocytic leukemia-retinoic acid receptor alpha (PML-RARalpha) fusion protein is expressed as a result of a t(15;17)(q22;q12) chromosomal translocation. PML-RARalpha inhibits expression of C/EBPepsilon, whereas all-trans retinoic acid (tRA), a differentiating agent to which APL is particularly susceptible, induces C/EBPepsilon expression. PML-RARalpha may also inhibit C/EBPalpha activity. Thus, the effects of PML-RARalpha on C/EBPs may contribute to both the development of leukemia and the unique sensitivity of APL to tRA. We tested the hypothesis that increasing the activity of C/EBPs would revert the leukemic phenotype. C/EBPalpha and C/EBPepsilon were introduced into the FDC-P1 myeloid cell line and into leukemic cells from PML-RARA transgenic mice. C/ EBP factors suppressed growth and induced partial differentiation in vitro. In vivo, enhanced expression of C/EBPs prolonged survival. By using a tamoxifen-responsive version of C/EBPepsilon, we observed that C/EBPepsilon could mimic the effect of tRA, driving neutrophilic differentiation in leukemic animals. Our results support the hypothesis that induction of C/ EBP activity is a critical effect of tRA in APL. Furthermore, our findings suggest that targeted modulation of C/ EBP activities could provide a new approach to therapy of AML.[1]

References

  1. CCAAT/Enhancer binding proteins repress the leukemic phenotype of acute myeloid leukemia. Truong, B.T., Lee, Y.J., Lodie, T.A., Park, D.J., Perrotti, D., Watanabe, N., Koeffler, H.P., Nakajima, H., Tenen, D.G., Kogan, S.C. Blood (2003) [Pubmed]
 
WikiGenes - Universities