The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Myelopoiesis

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Myelopoiesis

 

High impact information on Myelopoiesis

 

Chemical compound and disease context of Myelopoiesis

 

Biological context of Myelopoiesis

 

Anatomical context of Myelopoiesis

 

Associations of Myelopoiesis with chemical compounds

  • We show here that in human long-term bone marrow culture antibodies recognizing a CD44 NH2-terminal epitope (mab 25-32) or a CD44v6 epitope (mab VFF18) inhibit myelopoiesis [25].
  • Purified human lactoferrin was assessed for its influence in vivo in untreated mice and in mice undergoing rebound myelopoiesis after sublethal dosages of Cytoxan [26].
  • In vivo modulation of murine myelopoiesis following intravenous administration of prostaglandin E2 [27].
  • Stimulation of human myelopoiesis by leukotrienes B4 and C4: interactions with granulocyte-macrophage colony-stimulating factor [28].
  • Taken together, the data indicate that vitamin A present in human plasma has inhibitory as well as stimulatory effects on myelopoiesis [29].
 

Gene context of Myelopoiesis

  • Collectively, these findings indicate a novel role of IL-13 in early myelopoiesis, partially overlapping but also different from that of IL-4 [30].
  • Comparative effects in vivo of recombinant murine interleukin 3, natural murine colony-stimulating factor-1, and recombinant murine granulocyte-macrophage colony-stimulating factor on myelopoiesis in mice [31].
  • Transgenic expression of PML/RARalpha impairs myelopoiesis [32].
  • These data suggest that abnormal myelopoiesis due to PML/RARalpha expression is an early event in oncogenic transformation [32].
  • We propose that Meis1a and Hoxa9 are part of a molecular switch that regulates progenitor abundance by suppressing differentiation and maintaining self-renewal in response to different subsets of cytokines during myelopoiesis [33].
 

Analytical, diagnostic and therapeutic context of Myelopoiesis

References

  1. Stimulation of myelopoiesis in patients with aplastic anemia by recombinant human granulocyte-macrophage colony-stimulating factor. Vadhan-Raj, S., Buescher, S., Broxmeyer, H.E., LeMaistre, A., Lepe-Zuniga, J.L., Ventura, G., Jeha, S., Horwitz, L.J., Trujillo, J.M., Gillis, S. N. Engl. J. Med. (1988) [Pubmed]
  2. Changes in chromatin accessibility across the GM-CSF promoter upon T cell activation are dependent on nuclear factor kappaB proteins. Holloway, A.F., Rao, S., Chen, X., Shannon, M.F. J. Exp. Med. (2003) [Pubmed]
  3. B and T cells are not required for the viable motheaten phenotype. Yu, C.C., Tsui, H.W., Ngan, B.Y., Shulman, M.J., Wu, G.E., Tsui, F.W. J. Exp. Med. (1996) [Pubmed]
  4. An expanded population of natural killer cells in mice with severe combined immunodeficiency (SCID) lack rearrangement and expression of T cell receptor genes. Lauzon, R.J., Siminovitch, K.A., Fulop, G.M., Phillips, R.A., Roder, J.C. J. Exp. Med. (1986) [Pubmed]
  5. Engagement of p75/AIRM1 or CD33 inhibits the proliferation of normal or leukemic myeloid cells. Vitale, C., Romagnani, C., Falco, M., Ponte, M., Vitale, M., Moretta, A., Bacigalupo, A., Moretta, L., Mingari, M.C. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  6. JunB deficiency leads to a myeloproliferative disorder arising from hematopoietic stem cells. Passegué, E., Wagner, E.F., Weissman, I.L. Cell (2004) [Pubmed]
  7. Loss of the normal NF1 allele from the bone marrow of children with type 1 neurofibromatosis and malignant myeloid disorders. Shannon, K.M., O'Connell, P., Martin, G.A., Paderanga, D., Olson, K., Dinndorf, P., McCormick, F. N. Engl. J. Med. (1994) [Pubmed]
  8. Limitation of excessive myelopoiesis by the intrinsic modulation of macrophage-derived prostaglandin E. Kurland, J.I., Bockman, R.S., Broxmeyer, H.E., Moore, M.A. Science (1978) [Pubmed]
  9. Selective regulation of Bcl-XL by a Jak kinase-dependent pathway is bypassed in murine hematopoietic malignancies. Packham, G., White, E.L., Eischen, C.M., Yang, H., Parganas, E., Ihle, J.N., Grillot, D.A., Zambetti, G.P., Nuñez, G., Cleveland, J.L. Genes Dev. (1998) [Pubmed]
  10. Stroma-mediated dysregulation of myelopoiesis in mice lacking I kappa B alpha. Rupec, R.A., Jundt, F., Rebholz, B., Eckelt, B., Weindl, G., Herzinger, T., Flaig, M.J., Moosmann, S., Plewig, G., Dörken, B., Förster, I., Huss, R., Pfeffer, K. Immunity (2005) [Pubmed]
  11. Effect of human immunodeficiency virus-1 envelope glycoprotein on in vitro hematopoiesis of umbilical cord blood. Sugiura, K., Oyaizu, N., Pahwa, R., Kalyanaraman, V.S., Pahwa, S. Blood (1992) [Pubmed]
  12. Hemorrhagic shock inhibits lipopolysaccharide-induced myelopoiesis in both germ-free and conventional rats. Livingston, D.H., Wang, M.T., Hsieh, J., Murphy, T.F., Rush, B.F. Surgery (1992) [Pubmed]
  13. Prostaglandin E2 receptor antagonist (SC-19220) treatment restores the balance to bone marrow myelopoiesis after burn sepsis. Santangelo, S., Shoup, M., Gamelli, R.L., Shankar, R. The Journal of trauma. (2000) [Pubmed]
  14. Influence of high versus low intestinal concentration of gram-negative bacteria and endotoxin on the susceptibility of murine myelopoiesis in bone marrow and spleen to cytostatic treatment with Ara-C. Daenen, S., Goris, H., de Boer, F., Halie, M.R., van der Waaij, D. Leuk. Res. (1992) [Pubmed]
  15. Neutropenia associated with large granular lymphocytes responsive to corticosteroids in vitro and in vivo. Platanias, L., Raefsky, E., Young, N. Eur. J. Haematol. (1987) [Pubmed]
  16. The human embryo, but not its yolk sac, generates lympho-myeloid stem cells: mapping multipotent hematopoietic cell fate in intraembryonic mesoderm. Tavian, M., Robin, C., Coulombel, L., Péault, B. Immunity (2001) [Pubmed]
  17. Mammalian granulocyte-macrophage colony-stimulating factor receptor expressed in primary avian hematopoietic progenitors: lineage-specific regulation of proliferation and differentiation. Wessely, O., Deiner, E.M., Lim, K.C., Mellitzer, G., Steinlein, P., Beug, H. J. Cell Biol. (1998) [Pubmed]
  18. A cell-autonomous requirement for CXCR4 in long-term lymphoid and myeloid reconstitution. Kawabata, K., Ujikawa, M., Egawa, T., Kawamoto, H., Tachibana, K., Iizasa, H., Katsura, Y., Kishimoto, T., Nagasawa, T. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  19. Altered myelopoiesis and the development of acute myeloid leukemia in transgenic mice overexpressing cyclin A1. Liao, C., Wang, X.Y., Wei, H.Q., Li, S.Q., Merghoub, T., Pandolfi, P.P., Wolgemuth, D.J. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  20. Interleukin-11 inhibits adipogenesis and stimulates myelopoiesis in human long-term marrow cultures. Keller, D.C., Du, X.X., Srour, E.F., Hoffman, R., Williams, D.A. Blood (1993) [Pubmed]
  21. Human osteoblasts support hematopoiesis through the production of granulocyte colony-stimulating factor. Taichman, R.S., Emerson, S.G. J. Exp. Med. (1994) [Pubmed]
  22. Granulocyte colony-stimulating factor stimulates human mature neutrophilic granulocytes to produce interferon-alpha. Shirafuji, N., Matsuda, S., Ogura, H., Tani, K., Kodo, H., Ozawa, K., Nagata, S., Asano, S., Takaku, F. Blood (1990) [Pubmed]
  23. Role of colony-stimulating factor in myelopoiesis in murine long-term bone marrow cultures. Lipschitz, D.A., Udupa, K.B., Taylor, J.M., Shadduck, R.K., Waheed, A. Blood (1987) [Pubmed]
  24. Basic fibroblast growth factor expression in human bone marrow and peripheral blood cells. Brunner, G., Nguyen, H., Gabrilove, J., Rifkin, D.B., Wilson, E.L. Blood (1993) [Pubmed]
  25. Two different functions for CD44 proteins in human myelopoiesis. Moll, J., Khaldoyanidi, S., Sleeman, J.P., Achtnich, M., Preuss, I., Ponta, H., Herrlich, P. J. Clin. Invest. (1998) [Pubmed]
  26. Suppression of mouse myelopoiesis by administration of human lactoferrin in vivo and the comparative action of human transferrin. Gentile, P., Broxmeyer, H.E. Blood (1983) [Pubmed]
  27. In vivo modulation of murine myelopoiesis following intravenous administration of prostaglandin E2. Gentile, P., Byer, D., Pelus, L.M. Blood (1983) [Pubmed]
  28. Stimulation of human myelopoiesis by leukotrienes B4 and C4: interactions with granulocyte-macrophage colony-stimulating factor. Stenke, L., Mansour, M., Reizenstein, P., Lindgren, J.A. Blood (1993) [Pubmed]
  29. All-trans retinoic acid directly inhibits granulocyte colony-stimulating factor-induced proliferation of CD34+ human hematopoietic progenitor cells. Smeland, E.B., Rusten, L., Jacobsen, S.E., Skrede, B., Blomhoff, R., Wang, M.Y., Funderud, S., Kvalheim, G., Blomhoff, H.K. Blood (1994) [Pubmed]
  30. Interleukin 13: novel role in direct regulation of proliferation and differentiation of primitive hematopoietic progenitor cells. Jacobsen, S.E., Okkenhaug, C., Veiby, O.P., Caput, D., Ferrara, P., Minty, A. J. Exp. Med. (1994) [Pubmed]
  31. Comparative effects in vivo of recombinant murine interleukin 3, natural murine colony-stimulating factor-1, and recombinant murine granulocyte-macrophage colony-stimulating factor on myelopoiesis in mice. Broxmeyer, H.E., Williams, D.E., Cooper, S., Shadduck, R.K., Gillis, S., Waheed, A., Urdal, D.L., Bicknell, D.C. J. Clin. Invest. (1987) [Pubmed]
  32. Transgenic expression of PML/RARalpha impairs myelopoiesis. Early, E., Moore, M.A., Kakizuka, A., Nason-Burchenal, K., Martin, P., Evans, R.M., Dmitrovsky, E. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  33. Meis1a suppresses differentiation by G-CSF and promotes proliferation by SCF: potential mechanisms of cooperativity with Hoxa9 in myeloid leukemia. Calvo, K.R., Knoepfler, P.S., Sykes, D.B., Pasillas, M.P., Kamps, M.P. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  34. Administration of human recombinant granulocyte colony-stimulating factor (filgrastim) accelerates granulocyte recovery following high-dose chemotherapy and autologous marrow transplantation with 4-hydroperoxycyclophosphamide-purged marrow in women with metastatic breast cancer. Kennedy, M.J., Davis, J., Passos-Coelho, J., Noga, S.J., Huelskamp, A.M., Ohly, K., Davidson, N.E. Cancer Res. (1993) [Pubmed]
  35. Cloning and expression of bovine neutrophil beta-defensins. Biosynthetic profile during neutrophilic maturation and localization of mature peptide to novel cytoplasmic dense granules. Yount, N.Y., Yuan, J., Tarver, A., Castro, T., Diamond, G., Tran, P.A., Levy, J.N., McCullough, C., Cullor, J.S., Bevins, C.L., Selsted, M.E. J. Biol. Chem. (1999) [Pubmed]
  36. Bone marrow changes in adjuvant-induced and collagen-induced arthritis. Interleukin-1 and interleukin-6 activity and abnormal myelopoiesis. Hayashida, K., Ochi, T., Fujimoto, M., Owaki, H., Shimaoka, Y., Ono, K., Matsumoto, K. Arthritis Rheum. (1992) [Pubmed]
  37. Myb and Ets proteins cooperate to transactivate an early myeloid gene. Shapiro, L.H. J. Biol. Chem. (1995) [Pubmed]
  38. Combining G-CSF with a blockade of adhesion strongly improves the reconstitutive capacity of mobilized hematopoietic progenitor cells. Christ, O., Kronenwett, R., Haas, R., Zöller, M. Exp. Hematol. (2001) [Pubmed]
 
WikiGenes - Universities