The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Exposure to the herbicide acetochlor alters thyroid hormone-dependent gene expression and metamorphosis in Xenopus Laevis.

A growing number of substances released into the environment disrupt normal endocrine mechanisms in a wide range of vertebrates. Little is known about the effects and identities of endocrine-disrupting chemicals (EDCs) that target thyroid hormone (TH) action, particularly at the cellular level. Frog tadpole metamorphosis depends completely on TH, which has led to the suggestion of a metamorphosis-based assay for screening potential EDCs. A major mechanism of TH action is the alteration of gene expression via hormone-bound nuclear receptors. To assess the gene expression profiles in the frog model, we designed a novel multispecies frog cDNA microarray. Recently, the preemergent herbicide acetochlor was shown to accelerate 3,5,3 -triiodothyronine (T3)-induced forelimb emergence and increase mRNA expression of thyroid hormone ss receptors in ranid tadpoles. Here we show that T3-induced metamorphosis of Xenopus laevis, a species commonly used in the laboratory, is accelerated upon acute exposure to an environmentally relevant level of acetochlor. The morphologic changes observed are preceded by alterations in gene expression profiles detected in the tadpole tail, and the nature of these profiles suggest a novel mechanism of action for acetochlor.[1]

References

  1. Exposure to the herbicide acetochlor alters thyroid hormone-dependent gene expression and metamorphosis in Xenopus Laevis. Crump, D., Werry, K., Veldhoen, N., Van Aggelen, G., Helbing, C.C. Environ. Health Perspect. (2002) [Pubmed]
 
WikiGenes - Universities