The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The cartilage-specific fibronectin isoform has a high affinity binding site for the small proteoglycan decorin.

Binding of fibronectin to the small proteoglycan decorin plays an important role in cell differentiation and cell migration. The cartilage-specific (V+C)(-) fibronectin isoform, in which nucleotides that normally encode the protein segments V, III(15), and I(10) are spliced out, is one of the major splice variants present in cartilage matrices. Full-length and truncated cDNA constructs were used to express recombinant versions of fibronectin. Results demonstrated that the (V+C)(-) isoform has a higher affinity for decorin. Dissociation constants for decorin and fibronectin interaction were calculated to be 93 nm for the V(+)C(+) isoform and 24 nm and 223 nm for (V+C)(-) fibronectin. Because heparin competed with decorin competitively, binding of decorin to fibronectin likely occurs at a heparin-binding region. We propose that alternative splicing of the V and C regions changes the global conformation of fibronectin in such a way that it opens an additional decorin-binding site. This conformational change is responsible for the higher affinity of the (V+C)(-) fibronectin isoform for decorin.[1]

References

  1. The cartilage-specific fibronectin isoform has a high affinity binding site for the small proteoglycan decorin. Gendelman, R., Burton-Wurster, N.I., MacLeod, J.N., Lust, G. J. Biol. Chem. (2003) [Pubmed]
 
WikiGenes - Universities