The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Optically active iridium imidazol-2-ylidene-oxazoline complexes: preparation and use in asymmetric hydrogenation of arylalkenes.

This work explores the potential of iridium complexes of the N-heterocyclic carbene oxazoline ligands 1 in asymmetric hydrogenations of arylalkenes. The accessible carbene precursors, imidazolium salts 2, and robust iridium complexes 5 facilitated a discovery/optimization approach that featured preparation of a small library of iridium complexes, parallel hydrogenation reactions, and automated analysis. Three of the complexes (5ab, 5ad, and 5dp) and a similar rhodium complex (6ap) were studied by single-crystal X-ray diffraction techniques. This revealed molecular features of 6ap, and presumably the corresponding iridium complex 5ap, that the others do not have. In enantioselective hydrogenations of arylalkenes complex 5ap was the best for many, but not all, substrates. The enantioselectivities and conversions observed were sensitive to minor changes to the catalyst and substrate structure. Ligands with aliphatic N-heterocyclic carbene substituents gave complexes that are inactive, and do not lose the 1,5-cyclooctadiene ligands under the hydrogenation conditions. Experiments to investigate this unexpected observation imply that it is of a steric, rather than an electronic, origin. Temperature and pressure effects on the conversions and enantioselectivities of these reactions had minimal effects for some alkenes, but profound effects for others. In one case, the enantioselectivities obtained at high-pressure/low-temperature conditions were opposite to those obtained under high-temperature/low-pressure conditions (-64% enantiomeric excess versus +89% enantiomeric excess); a transformation from one prevalent mechanism to another is inferred from this. The studies of pressure dependence revealed that many reactions proceeded with high conversions, and optimal enantioselectivities in approximately 2 h when only 1 bar of hydrogen was used. Deuterium-labeling experiments provide evidence for other types of competing mechanisms that lead to D-incorporation at positions that do not correspond to direct addition to the double bond.[1]

References

  1. Optically active iridium imidazol-2-ylidene-oxazoline complexes: preparation and use in asymmetric hydrogenation of arylalkenes. Perry, M.C., Cui, X., Powell, M.T., Hou, D.R., Reibenspies, J.H., Burgess, K. J. Am. Chem. Soc. (2003) [Pubmed]
 
WikiGenes - Universities