The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Protective effect of nilvadipine against glutamate neurotoxicity in purified retinal ganglion cells.

We determined the effect of nilvadipine, a dihydropyridine-type calcium channel blocker, in preventing glutamate neurotoxicity in purified retinal ganglion cells (RGCs). RGCs were purified from dissociated rat retinal cells (postnatal days 6-8), using a modified two-step panning method, and cultured in serum-free medium containing neurotrophic factors and forskolin. RGC survival after exposure to glutamate (25 microM) with nilvadipine or other calcium channel blockers was measured by calcein-acetoxymethyl ester staining after 3 days in culture. Changes in the level of intracellular Ca(2+) ([Ca(2+)](i)) were measured with fura-2 fluorescence. Induction of apoptosis was evaluated using the TDT-dUTP terminal nick-end labeling technique. The neurotoxic effects of low doses of glutamate were blocked by a specific alpha-amino-3-dihydro-5-methylisoxazole-4-propionate-kainate receptor antagonist, 6,7-dinitroquinoxaline-2,3-dione (20 microM). Simultaneous application of nilvadipine (1-100 nM) with glutamate protected against glutamate neurotoxicity in a dose-dependent manner. Calcium-imaging experiments showed that the glutamate-evoked [Ca(2+)](i) increase was significantly blocked by nilvadipine (P<0.001), but not nifedipine and diltiazem, in about 50% of RGCs. In addition, the application of nilvadipine significantly reduced glutamate-induced apoptosis (P<0.001). These findings suggest that nilvadipine may partly inhibit glutamate-induced apoptotic cell death by blocking calcium influx via voltage-dependent calcium channels in purified RGCs.[1]

References

  1. Protective effect of nilvadipine against glutamate neurotoxicity in purified retinal ganglion cells. Otori, Y., Kusaka, S., Kawasaki, A., Morimura, H., Miki, A., Tano, Y. Brain Res. (2003) [Pubmed]
 
WikiGenes - Universities