The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Retinal Ganglion Cells

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Retinal Ganglion Cells


Psychiatry related information on Retinal Ganglion Cells


High impact information on Retinal Ganglion Cells


Chemical compound and disease context of Retinal Ganglion Cells


Biological context of Retinal Ganglion Cells


Anatomical context of Retinal Ganglion Cells


Associations of Retinal Ganglion Cells with chemical compounds

  • A subset of intrinsically photosensitive retinal ganglion cells transduce information about ambient lighting conditions to areas of the brain involved in tasks including entrainment of the circadian clock, pupillary light reflexes and melatonin synthesis [27].
  • Whereas PNS neurons in culture are intrinsically responsive to peptide trophic factors, retinal ganglion cells (RGCs) are not unless they are depolarized, or their intracellular levels of cyclic AMP (cAMP) are elevated [28].
  • Early regenerative responses induced by monoclonal antibodies directed against a surface glycoprotein of goldfish retinal ganglion cells [29].
  • Each of these polypeptides incorporated 32P when retinal ganglion cells were radiolabeled in vivo with [32P]orthophosphate and each cross-reacted with monoclonal antibodies specifically directed against phosphorylated epitopes on NF-H [30].
  • We report here that an identified population of central neurons, rat retinal ganglion cells, are resistant to the neurotoxic effects of millimolar concentrations of glutamate under otherwise normal culture conditions [31].

Gene context of Retinal Ganglion Cells


Analytical, diagnostic and therapeutic context of Retinal Ganglion Cells


  1. Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Delettre, C., Lenaers, G., Griffoin, J.M., Gigarel, N., Lorenzo, C., Belenguer, P., Pelloquin, L., Grosgeorge, J., Turc-Carel, C., Perret, E., Astarie-Dequeker, C., Lasquellec, L., Arnaud, B., Ducommun, B., Kaplan, J., Hamel, C.P. Nat. Genet. (2000) [Pubmed]
  2. Role of transcription factors Brn-3.1 and Brn-3.2 in auditory and visual system development. Erkman, L., McEvilly, R.J., Luo, L., Ryan, A.K., Hooshmand, F., O'Connell, S.M., Keithley, E.M., Rapaport, D.H., Ryan, A.F., Rosenfeld, M.G. Nature (1996) [Pubmed]
  3. Mitochondrial fission in apoptosis, neurodegeneration and aging. Bossy-Wetzel, E., Barsoum, M.J., Godzik, A., Schwarzenbacher, R., Lipton, S.A. Curr. Opin. Cell Biol. (2003) [Pubmed]
  4. Neurolin Ig domain 2 participates in retinal axon guidance and Ig domains 1 and 3 in fasciculation. Leppert, C.A., Diekmann, H., Paul, C., Laessing, U., Marx, M., Bastmeyer, M., Stuermer, C.A. J. Cell Biol. (1999) [Pubmed]
  5. Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. Stamer, K., Vogel, R., Thies, E., Mandelkow, E., Mandelkow, E.M. J. Cell Biol. (2002) [Pubmed]
  6. Cholinergic function and dysfunction in the visual system. Beelke, M., Sannita, W.G. Methods and findings in experimental and clinical pharmacology. (2002) [Pubmed]
  7. In vitro guidance of retinal ganglion cell axons by RAGS, a 25 kDa tectal protein related to ligands for Eph receptor tyrosine kinases. Drescher, U., Kremoser, C., Handwerker, C., Löschinger, J., Noda, M., Bonhoeffer, F. Cell (1995) [Pubmed]
  8. Collapsin: a protein in brain that induces the collapse and paralysis of neuronal growth cones. Luo, Y., Raible, D., Raper, J.A. Cell (1993) [Pubmed]
  9. Substance P-immunoreactive retinal ganglion cells and their central axon terminals in the rabbit. Brecha, N., Johnson, D., Bolz, J., Sharma, S., Parnavelas, J.G., Lieberman, A.R. Nature (1987) [Pubmed]
  10. astray, a zebrafish roundabout homolog required for retinal axon guidance. Fricke, C., Lee, J.S., Geiger-Rudolph, S., Bonhoeffer, F., Chien, C.B. Science (2001) [Pubmed]
  11. Tbx5 and the retinotectum projection. Koshiba-Takeuchi, K., Takeuchi, J.K., Matsumoto, K., Momose, T., Uno, K., Hoepker, V., Ogura, K., Takahashi, N., Nakamura, H., Yasuda, K., Ogura, T. Science (2000) [Pubmed]
  12. Invulnerability of retinal ganglion cells to NMDA excitotoxicity. Ullian, E.M., Barkis, W.B., Chen, S., Diamond, J.S., Barres, B.A. Mol. Cell. Neurosci. (2004) [Pubmed]
  13. Chronic low-dose glutamate is toxic to retinal ganglion cells. Toxicity blocked by memantine. Vorwerk, C.K., Lipton, S.A., Zurakowski, D., Hyman, B.T., Sabel, B.A., Dreyer, E.B. Invest. Ophthalmol. Vis. Sci. (1996) [Pubmed]
  14. Neuroprotection of retinal ganglion cells by brimonidine in rats with laser-induced chronic ocular hypertension. WoldeMussie, E., Ruiz, G., Wijono, M., Wheeler, L.A. Invest. Ophthalmol. Vis. Sci. (2001) [Pubmed]
  15. Pilocarpine toxicity in retinal ganglion cells. Vorwerk, C.K., Simon, P., Gorla, M., Katowitz, W., Zurakowski, D., Levin, L.A., Dreyer, E.B. Invest. Ophthalmol. Vis. Sci. (1999) [Pubmed]
  16. Brain beta-spectrin phosphorylation: phosphate analysis and identification of threonine-347 as a heparin-sensitive protein kinase phosphorylation site. Sihag, R.K. J. Neurochem. (1998) [Pubmed]
  17. Visual input induces long-term potentiation of developing retinotectal synapses. Zhang, L.I., Tao, H.W., Poo, M. Nat. Neurosci. (2000) [Pubmed]
  18. Ephrin-B2 and EphB1 mediate retinal axon divergence at the optic chiasm. Williams, S.E., Mann, F., Erskine, L., Sakurai, T., Wei, S., Rossi, D.J., Gale, N.W., Holt, C.E., Mason, C.A., Henkemeyer, M. Neuron (2003) [Pubmed]
  19. Vaccination for protection of retinal ganglion cells against death from glutamate cytotoxicity and ocular hypertension: implications for glaucoma. Schori, H., Kipnis, J., Yoles, E., WoldeMussie, E., Ruiz, G., Wheeler, L.A., Schwartz, M. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  20. The optic chiasm as a midline choice point. Williams, S.E., Mason, C.A., Herrera, E. Curr. Opin. Neurobiol. (2004) [Pubmed]
  21. Bax antisense oligonucleotides reduce axotomy-induced retinal ganglion cell death in vivo by reduction of Bax protein expression. Isenmann, S., Engel, S., Gillardon, F., Bähr, M. Cell Death Differ. (1999) [Pubmed]
  22. Neogenin mediates the action of repulsive guidance molecule. Rajagopalan, S., Deitinghoff, L., Davis, D., Conrad, S., Skutella, T., Chedotal, A., Mueller, B.K., Strittmatter, S.M. Nat. Cell Biol. (2004) [Pubmed]
  23. Laminin receptors in the retina: sequence analysis of the chick integrin alpha 6 subunit. Evidence for transcriptional and posttranslational regulation. de Curtis, I., Quaranta, V., Tamura, R.N., Reichardt, L.F. J. Cell Biol. (1991) [Pubmed]
  24. Modulation of glycine receptors in retinal ganglion cells by zinc. Han, Y., Wu, S.M. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  25. Light regulates expression of brain-derived neurotrophic factor mRNA in rat visual cortex. Castrén, E., Zafra, F., Thoenen, H., Lindholm, D. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  26. An animal model for Norrie disease (ND): gene targeting of the mouse ND gene. Berger, W., van de Pol, D., Bächner, D., Oerlemans, F., Winkens, H., Hameister, H., Wieringa, B., Hendriks, W., Ropers, H.H. Hum. Mol. Genet. (1996) [Pubmed]
  27. Making (a) sense of non-visual ocular photoreception. Van Gelder, R.N. Trends Neurosci. (2003) [Pubmed]
  28. Retinal ganglion cells lose trophic responsiveness after axotomy. Shen, S., Wiemelt, A.P., McMorris, F.A., Barres, B.A. Neuron (1999) [Pubmed]
  29. Early regenerative responses induced by monoclonal antibodies directed against a surface glycoprotein of goldfish retinal ganglion cells. Schwartz, M., Eshhar, N. EMBO J. (1984) [Pubmed]
  30. Multiple phosphorylated variants of the high molecular mass subunit of neurofilaments in axons of retinal cell neurons: characterization and evidence for their differential association with stationary and moving neurofilaments. Lewis, S.E., Nixon, R.A. J. Cell Biol. (1988) [Pubmed]
  31. Central mammalian neurons normally resistant to glutamate toxicity are made sensitive by elevated extracellular Ca2+: toxicity is blocked by the N-methyl-D-aspartate antagonist MK-801. Hahn, J.S., Aizenman, E., Lipton, S.A. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  32. The Wilms' tumor gene Wt1 is required for normal development of the retina. Wagner, K.D., Wagner, N., Vidal, V.P., Schley, G., Wilhelm, D., Schedl, A., Englert, C., Scholz, H. EMBO J. (2002) [Pubmed]
  33. Essential role for the Prader-Willi syndrome protein necdin in axonal outgrowth. Lee, S., Walker, C.L., Karten, B., Kuny, S.L., Tennese, A.A., O'Neill, M.A., Wevrick, R. Hum. Mol. Genet. (2005) [Pubmed]
  34. Targeted disruption of Aldh1a1 (Raldh1) provides evidence for a complex mechanism of retinoic acid synthesis in the developing retina. Fan, X., Molotkov, A., Manabe, S., Donmoyer, C.M., Deltour, L., Foglio, M.H., Cuenca, A.E., Blaner, W.S., Lipton, S.A., Duester, G. Mol. Cell. Biol. (2003) [Pubmed]
  35. Brain-derived neurotrophic factor and neurotrophin-4/5 stimulate growth of axonal branches from regenerating retinal ganglion cells. Sawai, H., Clarke, D.B., Kittlerova, P., Bray, G.M., Aguayo, A.J. J. Neurosci. (1996) [Pubmed]
  36. All Brn3 genes can promote retinal ganglion cell differentiation in the chick. Liu, W., Khare, S.L., Liang, X., Peters, M.A., Liu, X., Cepko, C.L., Xiang, M. Development (2000) [Pubmed]
  37. Molecular cloning and functional expression of the potassium-dependent sodium-calcium exchanger from human and chicken retinal cone photoreceptors. Prinsen, C.F., Szerencsei, R.T., Schnetkamp, P.P. J. Neurosci. (2000) [Pubmed]
  38. Retinal ganglion cells are autonomous circadian oscillators synthesizing N-acetylserotonin during the day. Garbarino-Pico, E., Carpentieri, A.R., Contin, M.A., Sarmiento, M.I., Brocco, M.A., Panzetta, P., Rosenstein, R.E., Caputto, B.L., Guido, M.E. J. Biol. Chem. (2004) [Pubmed]
  39. Interleukin-1 beta protects neurons via the interleukin-1 (IL-1) receptor-mediated Akt pathway and by IL-1 receptor-independent decrease of transmembrane currents in vivo. Diem, R., Hobom, M., Grötsch, P., Kramer, B., Bähr, M. Mol. Cell. Neurosci. (2003) [Pubmed]
  40. Selective excitotoxic degeneration of adult pig retinal ganglion cells in vitro. Luo, X., Heidinger, V., Picaud, S., Lambrou, G., Dreyfus, H., Sahel, J., Hicks, D. Invest. Ophthalmol. Vis. Sci. (2001) [Pubmed]
WikiGenes - Universities