Binding of filamin to the C-terminal tail of the calcitonin receptor controls recycling.
Many G protein-coupled receptors undergo endocytosis, but the mechanisms involved in endocytic sorting and recycling remain to be fully elucidated. We found that the G protein- coupled calcitonin receptor (CTR) undergoes tonic internalization and accumulates within the cell. Using a fluorescence loss in photobleaching assay, we classified these vesicles functionally as recycling vesicles. In a two-hybrid screening, we found that the actin-binding protein filamin interacted with the C-terminal tail of the CTR. The degradation of the receptor was profoundly increased in the absence of filamin or the CTR-filamin interaction. The absence of filamin was also associated with a marked decrease in recycling of the receptor from the endosomes to the cell surface. In contrast, calcitonin-induced inhibition of spontaneous filamin proteolysis was associated with increased recycling of the receptor to the cell surface and decreased degradation of the CTR, suggesting an important role for filamin in the endocytic sorting and recycling of the internalized CTR.[1]References
- Binding of filamin to the C-terminal tail of the calcitonin receptor controls recycling. Seck, T., Baron, R., Horne, W.C. J. Biol. Chem. (2003) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg