The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Adaptation of ovine fetal pancreatic insulin secretion to chronic hypoglycaemia and euglycaemic correction.

Fetal pancreatic adaptations to relative hypoglycaemia, a characteristic of intra-uterine growth restriction, may limit pancreatic beta-cell capacity to produce and/or secrete insulin. The objective of this study was to measure beta-cell responsiveness in hypoglycaemic (H) fetal sheep and ascertain whether a 5 day euglycaemic recovery period would restore insulin secretion capacity. Glucose-stimulated insulin secretion (GSIS) was measured in euglycaemic (E) control fetuses, fetuses made hypoglycaemic for 14 days, and in a subset of 14-day hypoglycaemic fetuses returned to euglycaemia for 5 days (R fetuses). Hypoglycaemia significantly decreased plasma insulin concentrations in H (0.13 +/- 0.01 ng ml(-1)) and R fetuses (0.11 +/- 0.01 ng ml(-1)); insulin concentrations returned to euglycaemic control values (0.30 +/- 0.01 ng ml(-1)) in R fetuses (0.29 +/- 0.04 ng ml(-1)) during their euglycaemic recovery period. Mean steady-state plasma insulin concentration during the GSIS study was reduced in H fetuses (0.40 +/- 0.07 vs. 0.92 +/- 0.10 ng ml(-1) in E), but increased (P < 0.05) in R fetuses (0.73 +/- 0.10 ng ml(-1)) to concentrations not different from those in the E group. Nonlinear modelling of GSIS showed that response time was greater (P < 0.01) in both H (15.6 +/- 2.8 min) and R (15.4 +/- 1.5 min) than in E fetuses ( 6.3 +/- 1.1 min). In addition, insulin secretion responsiveness to arginine was reduced by hypoglycaemia (0.98 +/- 0.11 ng ml(-1) in H vs. 1.82 +/- 0.17 ng ml(-1) in E, P < 0.05) and did not recover (1.21 +/- 0.15 ng ml(-1) in R, P < 0.05 vs. E). Thus, a 5 day euglycaemic recovery period from chronic hypoglycaemia reestablished GSIS to normal levels, but there was a persistent reduction of beta-cell responsiveness to glucose and arginine. We conclude that programming of pancreatic insulin secretion responsiveness can occur in response to fetal glucose deprivation, indicating a possible mechanism for establishing, in fetal life, a predisposition to type 2 diabetes.[1]


WikiGenes - Universities