The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Antisense-mediated loss of calcium homoeostasis endoplasmic reticulum protein (CHERP; ERPROT213-21) impairs Ca2+ mobilization, nuclear factor of activated T-cells (NFAT) activation and cell proliferation in Jurkat T-lymphocytes.

We recently discovered a novel gene on chromosome 19p13.1 and its product, an integral endoplasmic reticulum (ER) membrane protein, termed CHERP (calcium homoeostasis endoplasmic reticulum protein). A monoclonal antibody against its C-terminal domain inhibits Ins(1,4,5) P (3)-induced Ca(2+) release from ER membrane vesicles of many cell types, and an antisense-mediated knockdown of CHERP in human erythroleukemia (HEL) cells greatly impaired Ca(2+) mobilization by thrombin. In the present paper, we explore further CHERP's function in Jurkat T-lymphocytes. Confocal laser immunofluorescence microscopy showed that CHERP was co-localized with the Ins(1,4,5) P (3) receptor throughout the cytoplasmic and perinuclear region, as previously found in HEL cells. Transfection of Jurkat cells with a lac I-regulated mammalian expression vector containing CHERP antisense cDNA caused a knockdown of CHERP and impaired the rise of cytoplasmic Ca(2+) (measured by fura-2 acetoxymethyl ester fluorescence) caused by phytohaemagglutinin (PHA) and thrombin. A 50% fall of CHERP decreased the PHA-induced rise of the cytoplasmic free Ca(2+) concentration ([Ca(2+)](i)), but Ca(2+) influx was unaffected. Greater depletion of CHERP (>70%) did not affect the concentration of Ins(1,4,5) P (3) receptors, but diminished the rise of [Ca(2+)](i) in response to PHA to </=30% of that in control cells, decreased Ca(2+) influx and slowed the initial rate of [Ca(2+)](i) rise caused by thapsigargin, an inhibitor of the sarcoplasmic/endoplasmic-reticulum Ca(2+)-ATPase, suggesting there was also some deficit in ER Ca(2+) stores. In CHERP-depleted cells the Ca(2+)-dependent activation and translocation of the key transcription factor NFAT (nuclear factor of activated T-cells) from cytoplasm to nucleus was suppressed. Furthermore, cell proliferation was greatly slowed (as in HEL cells) along with a 60% decrease in cyclin D1, a key regulator of progression through the G(1) phase of the cell cycle. These findings provide further evidence that CHERP is an important component of the ER Ca(2+)-mobilizing system in cells, and its loss impairs Ca(2+)-dependent biochemical pathways and progression through the cell cycle.[1]

References

 
WikiGenes - Universities