The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Jurkat Cells

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Jurkat Cells


High impact information on Jurkat Cells

  • FR-alpha expression in Jurkat cells facilitated MBG or EBO entry, and FR-blocking reagents inhibited infection by MBG or EBO [6].
  • However, we were unable to detect IL-1 binding to Jurkat cells [7].
  • 5' deletion constructs extending to -327 directed CAT expression in HTLV-I-infected T cells, which express IL2R alpha constitutively, and in Jurkat cells, which express IL2R alpha only after induction [8].
  • Although human Jurkat cells and mouse primary hepatocytes that express a low level of Fas were resistant to the soluble form of FasL, they were efficiently killed by membrane-bound FasL [9].
  • To explore the potential of human IL-16 for gene therapy, this portion was transfected into HIV-1-susceptible CD4+ jurkat cells by means of a mammalian expression vector [10].

Chemical compound and disease context of Jurkat Cells


Biological context of Jurkat Cells


Anatomical context of Jurkat Cells

  • The gene encoding human interleukin-2 (IL-2) has been cloned from human spleen cells, peripheral blood lymphocytes, and the Jurkat cell line [21].
  • Isolated melanosomes express FasL, as detected by Western blot and cytofluorimetry, and they can exert Fas-mediated apoptosis in Jurkat cells [22].
  • The synthetic caspase inhibitors, N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone (Z-VAD-FMK) and N-benzyloxycarbonyl-Asp-glu-Val-Asp-fluoromethyl ketone (Z-DEVD-FMK), effectively blocked apoptosis of Jurkat cells co-incubated with SCCHN cell lines, suggesting the involvement of caspases in tumor-induced apoptosis of lymphocytes [23].
  • Overexpression of wild-type 14-3-3 tau also inhibited phorbol ester-induced PKC theta translocation from the cytosol to the membrane in Jurkat cells, while a membrane-targeted form of 14-3-3 tau caused increased localization of PKC theta in the particulate fraction in unstimulated cells [24].
  • Here we demonstrate that the c-myb proto-oncogene product, which is itself a DNA-binding protein and transcriptional transactivator, can interact synergistically with Z in activating the BMRF1 promoter in Jurkat cells (a T-cell line) or Raji cells (an EBV-positive B-cell), whereas the c-myb gene product by itself has little effect [5].

Associations of Jurkat Cells with chemical compounds

  • Using highly purified, recombinant human IL-1, we show that IL-1 stimulates rapid diacylglycerol and phosphorylcholine production from phosphatidylcholine (PC) in the absence of phosphatidylinositol turnover in Jurkat cells [7].
  • We report here that overexpression of calcineurin in Jurkat cells renders them more resistant to the effects of CsA and FK506 and augments both NFAT- and NFIL2A-dependent transcription [25].
  • Stable Jurkat cell lines that expressed a dominant-negative PAK mutant were resistant to the Fas-induced formation of apoptotic bodies, but had an enhanced externalization of phosphatidylserine at the cell surface [26].
  • Taken together, these results demonstrate the occurrence in Jurkat cells of a tyrosine kinase pathway specifically coupled to the CD2 molecule [27].
  • Together with suboptimal concentrations of anti-CD3, engagement of IAP also enhances IL-2 production in Jurkat cells, an apparently integrin-independent function of IAP [28].

Gene context of Jurkat Cells

  • These studies establish that p56lck associates with PLC gamma 1 as a result of TCR stimulation of Jurkat cells, suggesting that p56lck plays a central role in coupling the TCR to the activation of PLC gamma 1 [29].
  • We demonstrate here that the cytoplasmic region of NKB1 is capable of inhibiting T cell activation in Jurkat cells [30].
  • A caspase 8-deficient subline (JB6) of human Jurkat cells can be killed by the oligomerization of Fas-associated protein with death domain (FADD) [31].
  • CD95L resistant myeloma cells were found to be sensitive to TRAIL, displaying apoptotic features similar to those of the CD95L- and TRAIL-sensitive T leukemia cells Jurkat [32].
  • VLA-4 on Jurkat cells is of constitutively high avidity and interfered with migration across barriers expressing VCAM-1 [33].

Analytical, diagnostic and therapeutic context of Jurkat Cells


  1. Cooperative inhibition of NF-kappa B and Tat-induced superactivation of human immunodeficiency virus type 1 long terminal repeat. Biswas, D.K., Ahlers, C.M., Dezube, B.J., Pardee, A.B. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  2. Formation of in vivo complexes between the TAL1 and E2A polypeptides of leukemic T cells. Hsu, H.L., Wadman, I., Baer, R. Proc. Natl. Acad. Sci. U.S.A. (1994) [Pubmed]
  3. Alteration of phosphatidylinositol 3-kinase cascade in the multilobulated nuclear formation of adult T cell leukemia/lymphoma (ATLL). Fukuda, R., Hayashi, A., Utsunomiya, A., Nukada, Y., Fukui, R., Itoh, K., Tezuka, K., Ohashi, K., Mizuno, K., Sakamoto, M., Hamanoue, M., Tsuji, T. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  4. Transcriptional regulation of the human interleukin-6 gene promoter in human T-cell leukemia virus type I-infected T-cell lines: evidence for the involvement of NF-kappa B. Mori, N., Shirakawa, F., Shimizu, H., Murakami, S., Oda, S., Yamamoto, K., Eto, S. Blood (1994) [Pubmed]
  5. The cellular oncogene c-myb can interact synergistically with the Epstein-Barr virus BZLF1 transactivator in lymphoid cells. Kenney, S.C., Holley-Guthrie, E., Quinlivan, E.B., Gutsch, D., Zhang, Q., Bender, T., Giot, J.F., Sergeant, A. Mol. Cell. Biol. (1992) [Pubmed]
  6. Folate receptor-alpha is a cofactor for cellular entry by Marburg and Ebola viruses. Chan, S.Y., Empig, C.J., Welte, F.J., Speck, R.F., Schmaljohn, A., Kreisberg, J.F., Goldsmith, M.A. Cell (2001) [Pubmed]
  7. Interleukin-1 stimulates diacylglycerol production in T lymphocytes by a novel mechanism. Rosoff, P.M., Savage, N., Dinarello, C.A. Cell (1988) [Pubmed]
  8. Regulation of the human interleukin-2 receptor alpha chain promoter: activation of a nonfunctional promoter by the transactivator gene of HTLV-I. Cross, S.L., Feinberg, M.B., Wolf, J.B., Holbrook, N.J., Wong-Staal, F., Leonard, W.J. Cell (1987) [Pubmed]
  9. Downregulation of Fas ligand by shedding. Tanaka, M., Itai, T., Adachi, M., Nagata, S. Nat. Med. (1998) [Pubmed]
  10. Human CD4+ cells transfected with IL-16 cDNA are resistant to HIV-1 infection: inhibition of mRNA expression. Zhou, P., Goldstein, S., Devadas, K., Tewari, D., Notkins, A.L. Nat. Med. (1997) [Pubmed]
  11. Promoter region of interleukin-2 gene undergoes chromatin structure changes and confers inducibility on chloramphenicol acetyltransferase gene during activation of T cells. Siebenlist, U., Durand, D.B., Bressler, P., Holbrook, N.J., Norris, C.A., Kamoun, M., Kant, J.A., Crabtree, G.R. Mol. Cell. Biol. (1986) [Pubmed]
  12. Contact of human immunodeficiency virus type 1-infected and uninfected CD4+ T lymphocytes is highly cytolytic for both cells. Heinkelein, M., Sopper, S., Jassoy, C. J. Virol. (1995) [Pubmed]
  13. Resumption of virus production after human immunodeficiency virus infection of T lymphocytes in the presence of azidothymidine. Smith, M.S., Brian, E.L., Pagano, J.S. J. Virol. (1987) [Pubmed]
  14. The aminopeptidase activity in the human T-cell lymphoma line (Jurkat) is not at the cell surface and is not aminopeptidase N (CD-13). Murray, H., Turner, A.J., Kenny, A.J. Biochem. J. (1994) [Pubmed]
  15. The 70-kilodalton pertussis toxin-binding protein in Jurkat cells. Armstrong, G.D., Clark, C.G., Heerze, L.D. Infect. Immun. (1994) [Pubmed]
  16. FADD/MORT1 and caspase-8 are recruited to TRAIL receptors 1 and 2 and are essential for apoptosis mediated by TRAIL receptor 2. Sprick, M.R., Weigand, M.A., Rieser, E., Rauch, C.T., Juo, P., Blenis, J., Krammer, P.H., Walczak, H. Immunity (2000) [Pubmed]
  17. A 275 basepair fragment at the 5' end of the interleukin 2 gene enhances expression from a heterologous promoter in response to signals from the T cell antigen receptor. Durand, D.B., Bush, M.R., Morgan, J.G., Weiss, A., Crabtree, G.R. J. Exp. Med. (1987) [Pubmed]
  18. Regulation of Rb and E2F by signal transduction cascades: divergent effects of JNK1 and p38 kinases. Wang, S., Nath, N., Minden, A., Chellappan, S. EMBO J. (1999) [Pubmed]
  19. Interaction of an NF-kappa B-like factor with a site upstream of the c-myc promoter. Duyao, M.P., Buckler, A.J., Sonenshein, G.E. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  20. A peptide inhibitor of cytochrome c/inositol 1,4,5-trisphosphate receptor binding blocks intrinsic and extrinsic cell death pathways. Boehning, D., van Rossum, D.B., Patterson, R.L., Snyder, S.H. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  21. Site-specific mutagenesis of the human interleukin-2 gene: structure-function analysis of the cysteine residues. Wang, A., Lu, S.D., Mark, D.F. Science (1984) [Pubmed]
  22. Induction of lymphocyte apoptosis by tumor cell secretion of FasL-bearing microvesicles. Andreola, G., Rivoltini, L., Castelli, C., Huber, V., Perego, P., Deho, P., Squarcina, P., Accornero, P., Lozupone, F., Lugini, L., Stringaro, A., Molinari, A., Arancia, G., Gentile, M., Parmiani, G., Fais, S. J. Exp. Med. (2002) [Pubmed]
  23. Tumor-induced apoptosis of T lymphocytes: elucidation of intracellular apoptotic events. Gastman, B.R., Johnson, D.E., Whiteside, T.L., Rabinowich, H. Blood (2000) [Pubmed]
  24. Direct interaction between protein kinase C theta (PKC theta) and 14-3-3 tau in T cells: 14-3-3 overexpression results in inhibition of PKC theta translocation and function. Meller, N., Liu, Y.C., Collins, T.L., Bonnefoy-Bérard, N., Baier, G., Isakov, N., Altman, A. Mol. Cell. Biol. (1996) [Pubmed]
  25. Identification of calcineurin as a key signalling enzyme in T-lymphocyte activation. Clipstone, N.A., Crabtree, G.R. Nature (1992) [Pubmed]
  26. Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of PAK2. Rudel, T., Bokoch, G.M. Science (1997) [Pubmed]
  27. Tyrosine phosphorylation and association with phospholipase C gamma-1 of the GAP-associated 62-kD protein after CD2 stimulation of Jurkat T cell. Hubert, P., Debré, P., Boumsell, L., Bismuth, G. J. Exp. Med. (1993) [Pubmed]
  28. Costimulation of T cell activation by integrin-associated protein (CD47) is an adhesion-dependent, CD28-independent signaling pathway. Reinhold, M.I., Lindberg, F.P., Kersh, G.J., Allen, P.M., Brown, E.J. J. Exp. Med. (1997) [Pubmed]
  29. Association of the tyrosine kinase LCK with phospholipase C-gamma 1 after stimulation of the T cell antigen receptor. Weber, J.R., Bell, G.M., Han, M.Y., Pawson, T., Imboden, J.B. J. Exp. Med. (1992) [Pubmed]
  30. Phosphotyrosines in the killer cell inhibitory receptor motif of NKB1 are required for negative signaling and for association with protein tyrosine phosphatase 1C. Fry, A.M., Lanier, L.L., Weiss, A. J. Exp. Med. (1996) [Pubmed]
  31. Necrotic death pathway in Fas receptor signaling. Matsumura, H., Shimizu, Y., Ohsawa, Y., Kawahara, A., Uchiyama, Y., Nagata, S. J. Cell Biol. (2000) [Pubmed]
  32. Interleukin 1 beta-converting enzyme related proteases/caspases are involved in TRAIL-induced apoptosis of myeloma and leukemia cells. Mariani, S.M., Matiba, B., Armandola, E.A., Krammer, P.H. J. Cell Biol. (1997) [Pubmed]
  33. Sequential regulation of alpha 4 beta 1 and alpha 5 beta 1 integrin avidity by CC chemokines in monocytes: implications for transendothelial chemotaxis. Weber, C., Alon, R., Moser, B., Springer, T.A. J. Cell Biol. (1996) [Pubmed]
  34. Phospholipase C-gamma 1 association with CD3 structure in T cells. Dasgupta, J.D., Granja, C., Druker, B., Lin, L.L., Yunis, E.J., Relias, V. J. Exp. Med. (1992) [Pubmed]
  35. Positive and negative regulation of granulocyte-macrophage colony-stimulating factor promoter activity by AML1-related transcription factor, PEBP2. Takahashi, A., Satake, M., Yamaguchi-Iwai, Y., Bae, S.C., Lu, J., Maruyama, M., Zhang, Y.W., Oka, H., Arai, N., Arai, K. Blood (1995) [Pubmed]
  36. Neutrophil-derived TNF-related apoptosis-inducing ligand (TRAIL): a novel mechanism of antitumor effect by neutrophils. Koga, Y., Matsuzaki, A., Suminoe, A., Hattori, H., Hara, T. Cancer Res. (2004) [Pubmed]
  37. T-cell antigen receptor ligation induces tyrosine phosphorylation of phospholipase C-gamma 1. Secrist, J.P., Karnitz, L., Abraham, R.T. J. Biol. Chem. (1991) [Pubmed]
  38. Extracellular HIV-1 Tat protein induces the rapid Ser133 phosphorylation and activation of CREB transcription factor in both Jurkat lymphoblastoid T cells and primary peripheral blood mononuclear cells. Gibellini, D., Bassini, A., Pierpaoli, S., Bertolaso, L., Milani, D., Capitani, S., La Placa, M., Zauli, G. J. Immunol. (1998) [Pubmed]
WikiGenes - Universities