The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Genetic variations in the interleukin-12/interleukin-23 receptor (beta1) chain, and implications for IL-12 and IL-23 receptor structure and function.

Cell-mediated immunity (CMI) plays an essential role in human host defense against intracellular bacteria. Type-1 cytokines, particularly gamma interferon (IFN-gamma), interleukin-12 (IL-12), and IL-23, the major cytokines that regulate IFN-gamma production, are essential in CMI. This is illustrated by patients with unusual severe infections caused by poorly pathogenic mycobacteria and Salmonella species, in whom genetic deficiencies have been identified in several key genes in the type-1 cytokine pathway, including IL12RB1, the gene encoding the beta1 chain of the IL-12 and IL-23 receptors. Several mutations in IL12RB1 with deleterious effects on human IL-12R function have been identified, including nonsense and missense mutations. In addition, a number of coding IL12RB1 polymorphisms have been reported. In order to gain more insight into the effect that IL12RB1 mutations and genetic variations can have on IL-12Rbeta1 function, three approaches have been followed. First, we determined the degree of conservation at the variant amino acid positions in IL-12Rbeta1 between different species, using known deleterious mutations, known variations in IL-12Rbeta1, as well as novel coding variations that we have identified at position S74R and R156H. Second, we analyzed the potential impact of these amino acid variations on the three-dimensional structure of the IL-12Rbeta1 protein. Third, we analyzed the putative functions of different IL-12Rbeta1 domains, partly based on their homology with gp130, and analyzed the possible effects of the above amino acid variations on the function of these domains. Based on these analyses, we propose an integrated model of IL-12Rbeta1 structure and function. This significantly enhances our molecular understanding of the human IL-12 and IL-23 systems.[1]

References

  1. Genetic variations in the interleukin-12/interleukin-23 receptor (beta1) chain, and implications for IL-12 and IL-23 receptor structure and function. van de Vosse, E., Lichtenauer-Kaligis, E.G., van Dissel, J.T., Ottenhoff, T.H. Immunogenetics (2003) [Pubmed]
 
WikiGenes - Universities