The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

3'UTRs of glutathione peroxidases differentially affect selenium-dependent mRNA stability and selenocysteine incorporation efficiency.

Selenoprotein mRNAs are particular in several aspects. They contain a specific secondary structure in their 3'UTR, called Secis (selenocysteine inserting sequence), which is indispensable for selenocysteine incorporation, and they are degraded under selenium-limiting conditions according to their ranking in the hierarchy of selenoproteins. In the familiy of selenium-dependent glutathione peroxidases (GPx) the ranking is GI-GPx > or = PHGPx > cGPx = pGPx. This phenomenon was studied by mutually combining the coding regions of GI-GPx, PHGPx and cGPx with their 3'UTRs. HepG2 cells were stably transfected with the resulting constructs. Expression of glutathione peroxidases was estimated by activity measurement and Western blotting, the selenium-dependent mRNA stability by real-time PCR. Whereas 3'UTRs from stable PHGPx and GI-GPx could be exchanged without loss of stability, they were not able to stabilize cGPx mRNA. cGPx 3'UTR rendered GI-GPx and PHGPx mRNA unstable. Thus, cGPx mRNA contains selenium-responsive instability elements in both the translated and the untranslated region, which cannot be compensated by one of the stable homologs. Stabilizing efficiency of an individual GPx 3'UTR did not correlate with the efficiency of selenocysteine incorporation. PHGPx 3'UTR was equally effective as cGPx 3'UTR in enhancing GPx activity in all constructs, while GI-GPx 3'UTR showed a markedly lower efficacy. We conclude that different mRNA sequences and/or RNA-binding proteins might regulate mRNA stability and translation of selenoprotein mRNA.[1]


WikiGenes - Universities