The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Regulatory cytokine production stimulated by DNA vaccination against an altered form of glutamic acid decarboxylase 65 in nonobese diabetic mice.

Nonobese diabetic (NOD) mice develop a T-cell dependent autoimmune form of diabetes, in which glutamic acid decarboxylase 65 (GAD65) is an important islet target antigen. Intramuscular DNA vaccination with a plasmid encoding native GAD65 (a cytosolic antigen) did not significantly alter the incidence of diabetes, but vaccination against an altered form of GAD65 with a signal peptide (spGAD), which is secreted in vitro, was protective. The preventive effect was further enhanced by repeated injections of the spGAD plasmid. Following DNA injection into muscle GAD65 was expressed for several months, and this was not accompanied by an inflammatory response. Immunization against GAD65 was not associated with substantial alterations in cytokine production by splenic lymphocytes stimulated with immunogenic GAD65 peptides. In contrast, spGAD induced increased secretion of both interleukin 10 and interferon gamma and a striking decrease in the interferon gamma/interleukin 10 ratio in culture supernatants. Similarly, spGAD-immunized mice had higher serum interleukin 10 levels and lower serum interferon gamma levels than other groups, suggesting a systemic effect. In nondiabetic mice there was increased basal production of transforming growth factor beta(1), which was enhanced by antigenic stimulation. These alterations in regulatory cytokine production were apparent both early and late after the treatment was initiated. These findings suggest that DNA vaccination against spGAD protects NOD mice by increasing regulatory cytokine production.[1]


WikiGenes - Universities