The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Trehalose and glycogen accumulation is related to the duration of the G1 phase of Saccharomyces cerevisiae.

Several factors may control trehalose and glycogen synthesis, like the glucose flux, the growth rate, the intracellular glucose-6-phosphate level and the glucose concentration in the medium. Here, the possible relation of these putative inducers to reserve carbohydrate accumulation was studied under well-defined growth conditions in nitrogen-limited continuous cultures. We showed that the amounts of accumulated trehalose and glycogen were regulated by the growth rate imposed on the culture, whereas other implicated inducers did not exhibit a correlation with reserve carbohydrate accumulation. Trehalose accumulation was induced at a dilution rate (D)</=0.10 h(-1), whereas glycogen accumulation gradually increased at decreasing growth rates. The growth rate dependency of trehalose accumulation was supported by studies in cells overexpressing the G(1)-cyclin CLN3. The trehalose level appeared to be dependent on the duration of the G(1) phase, as trehalose was only accumulated at a G(1) phase duration of more than 5 h in both wild-type and CLN3-overexpressing cells. On the other hand, the glycogen level was reduced by CLN3 overexpression in a cell cycle-independent manner. A possible regulatory mechanism that links trehalose and glycogen accumulation to the growth rate is discussed.[1]

References

  1. Trehalose and glycogen accumulation is related to the duration of the G1 phase of Saccharomyces cerevisiae. Paalman, J.W., Verwaal, R., Slofstra, S.H., Verkleij, A.J., Boonstra, J., Verrips, C.T. FEMS Yeast Res. (2003) [Pubmed]
 
WikiGenes - Universities