Cyanobacterial circadian clockwork: roles of KaiA, KaiB and the kaiBC promoter in regulating KaiC.
Using model strains in which we ectopically express the cyanobacterial clock protein KaiC in cells from which the clock genes kaiA, kaiB and/or kaiC are deleted, we found that some features of circadian clocks in eukaryotic organisms are conserved in the clocks of prokaryotic cyanobacteria, but others are not. One unexpected difference is that the circadian autoregulatory feedback loop in cyanobacteria does not require specific clock gene promoters as it does in eukaryotes, because a heterologous promoter can functionally replace the kaiBC promoter. On the other hand, a similarity between eukaryotic clock proteins and the cyanobacterial KaiC protein is that KaiC is phosphorylated in vivo. The other essential clock proteins KaiA and KaiB modulate the status of KaiC phosphorylation; KaiA inhibits KaiC dephosphorylation and KaiB antagonizes this action of KaiA. Based upon an analysis of clock mutants, we conclude that the circadian period in cyanobacteria is determined by the phosphorylation status of KaiC and also by the degradation rate of KaiC. These observations are integrated into a model proposing rhythmic changes in chromosomal status.[1]References
- Cyanobacterial circadian clockwork: roles of KaiA, KaiB and the kaiBC promoter in regulating KaiC. Xu, Y., Mori, T., Johnson, C.H. EMBO J. (2003) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg