The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Cyanobacteria

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Cyanobacteria

 

High impact information on Cyanobacteria

  • After the evolution of oxygen-producing cyanobacteria at some time before 2.7 billion years ago, oxygen production on Earth is thought to have depended on the availability of nutrients in the oceans, such as phosphorus (in the form of orthophosphate) [6].
  • Here we show that there are unicellular cyanobacteria in the open ocean that are expressing nitrogenase, and are abundant enough to potentially have a significant role in N dynamics [7].
  • We show here that low transfer efficiencies between primary producers and consumers during cyanobacteria bloom conditions are related to low relative eicosapentaenoic acid (20:5omega3) content of the primary producer community [8].
  • As in all chloroplast psbA genes, there is a seven amino-acid gap near the C terminus of the derived protein relative to the protein predicted by cyanobacterial genes, suggesting that P. hollandica is part of the lineage that led to chloroplasts after a divergence from cyanobacteria [9].
  • Such an origin fits well in the case of the chloroplasts of rhodophytes that, like cyanobacteria, contain chlorophyll a and phycobilin pigments [10].
 

Chemical compound and disease context of Cyanobacteria

  • The salient features, in both higher plants and cyanobacteria, are a pair of di-mu-oxo bridged manganese binuclear clusters linked by a mono-mu-oxo bridge, one proximal calcium atom, and one halide [11].
  • Assays with seven other species of blue-green algae showed that they had varying sensitivities ranging from 1 to 100 micrograms of p-toluidine [12].
  • The gene for the leucine transfer RNA with a UAA anticodon [tRNALeu (UAA)] from five diverse cyanobacteria and several major groups of chloroplasts contains a single group I intron [13].
  • The topics include a description of the electron transfer cofactors, the mode of binding of the cofactors to protein-bound ligands, and a description of intraprotein contacts that ultimately allow photosystem I to be assembled (in cyanobacteria) from 96 chlorophylls, 22 carotenoids, 2 phylloquinones, 3 [4Fe-4S] clusters, and 12 polypeptides [14].
  • Heterocysts are microaerobic, N2-fixing cells that form in a patterned array within O2-producing filamentous cyanobacteria [15].
 

Biological context of Cyanobacteria

 

Anatomical context of Cyanobacteria

  • The ARC6 gene product is related closely to Ftn2, a prokaryotic cell division protein unique to cyanobacteria [19].
  • As the phycobiliproteins form a group of closely related polypeptides in cyanobacteria and rhodophyta, the molecular events affecting the corresponding genes, such as the rpeB intron, may be a clue to elucidate some aspects of the molecular processes involved in the evolution of plastid genes [20].
  • The enzyme furnishes a means for formation of correctly charged Gln-tRNAGln through the transamidation of misacylated Glu-tRNAGln, functionally replacing the lack of glutaminyl-tRNA synthetase activity in Gram-positive eubacteria, cyanobacteria, Archaea, and organelles [21].
  • The samples included thylakoid membranes, salt-washed Triton X-100-prepared membrane fragments, and purified core complexes from spinach and cyanobacteria [22].
  • Cyanobacteria contain several genes, annotated ndh, whose products show sequence similarities to subunits found in complex I (NADH:ubiquinone oxidoreductase) of eubacteria and mitochondria [23].
 

Gene context of Cyanobacteria

  • The metabolic context of GLYK activity in fungi and cyanobacteria remains to be investigated [24].
  • Although bacteria contain only one essential FTSH gene, multiple genes exist in cyanobacteria and higher plants [25].
  • The existence of the glnB gene in different strains of cyanobacteria is demonstrated and its implications are discussed [26].
  • Although cyanobacteria and Chlamydomonas have 2-on-2 Hbs (GLBN), GLB3 is more likely related to GLBO-type 2-on-2 Hbs from bacteria [27].
  • Transformation of DGD1 constructs into cyanobacteria resulted in the expression of active DGDG synthase and demonstrated that DGDG synthesis depends on MGDG lipid, but does not require direct interaction with the plant MGDG synthase [28].
 

Analytical, diagnostic and therapeutic context of Cyanobacteria

References

  1. Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus species. Nagata, N., Tanaka, R., Satoh, S., Tanaka, A. Plant Cell (2005) [Pubmed]
  2. Highly divergent methyltransferases catalyze a conserved reaction in tocopherol and plastoquinone synthesis in cyanobacteria and photosynthetic eukaryotes. Cheng, Z., Sattler, S., Maeda, H., Sakuragi, Y., Bryant, D.A., DellaPenna, D. Plant Cell (2003) [Pubmed]
  3. A mechanism for slow release of biomagnified cyanobacterial neurotoxins and neurodegenerative disease in Guam. Murch, S.J., Cox, P.A., Banack, S.A. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  4. A polyphosphate kinase (PPK2) widely conserved in bacteria. Zhang, H., Ishige, K., Kornberg, A. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  5. Rubisco rules fall; gene transfer triumphs. Palmer, J.D. Bioessays (1995) [Pubmed]
  6. Ocean productivity before about 1.9 Gyr ago limited by phosphorus adsorption onto iron oxides. Bjerrum, C.J., Canfield, D.E. Nature (2002) [Pubmed]
  7. Unicellular cyanobacteria fix N2 in the subtropical North Pacific Ocean. Zehr, J.P., Waterbury, J.B., Turner, P.J., Montoya, J.P., Omoregie, E., Steward, G.F., Hansen, A., Karl, D.M. Nature (2001) [Pubmed]
  8. A highly unsaturated fatty acid predicts carbon transfer between primary producers and consumers. Müller-Navarra, D.C., Brett, M.T., Liston, A.M., Goldman, C.R. Nature (2000) [Pubmed]
  9. psbA genes indicate common ancestry of prochlorophytes and chloroplasts. Morden, C.W., Golden, S.S. Nature (1989) [Pubmed]
  10. The relationship of a prochlorophyte Prochlorothrix hollandica to green chloroplasts. Turner, S., Burger-Wiersma, T., Giovannoni, S.J., Mur, L.R., Pace, N.R. Nature (1989) [Pubmed]
  11. Where plants make oxygen: a structural model for the photosynthetic oxygen-evolving manganese cluster. Yachandra, V.K., DeRose, V.J., Latimer, M.J., Mukerji, I., Sauer, K., Klein, M.P. Science (1993) [Pubmed]
  12. Anilines: selective toxicity to blue-green algae. Batterton, J., Winters, K., Van Baalen, C. Science (1978) [Pubmed]
  13. An ancient group I intron shared by eubacteria and chloroplasts. Kuhsel, M.G., Strickland, R., Palmer, J.D. Science (1990) [Pubmed]
  14. The binding of cofactors to photosystem I analyzed by spectroscopic and mutagenic methods. Golbeck, J.H. Annual review of biophysics and biomolecular structure. (2003) [Pubmed]
  15. Heterocyst formation. Wolk, C.P. Annu. Rev. Genet. (1996) [Pubmed]
  16. Bacterial origin of a chloroplast intron: conserved self-splicing group I introns in cyanobacteria. Xu, M.Q., Kathe, S.D., Goodrich-Blair, H., Nierzwicki-Bauer, S.A., Shub, D.A. Science (1990) [Pubmed]
  17. A single polypeptide catalyzing the conversion of phytoene to zeta-carotene is transcriptionally regulated during tomato fruit ripening. Pecker, I., Chamovitz, D., Linden, H., Sandmann, G., Hirschberg, J. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  18. Nonmetabolizable analogue of 2-oxoglutarate elicits heterocyst differentiation under repressive conditions in Anabaena sp. PCC 7120. Laurent, S., Chen, H., Bédu, S., Ziarelli, F., Peng, L., Zhang, C.C. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  19. ARC6 is a J-domain plastid division protein and an evolutionary descendant of the cyanobacterial cell division protein Ftn2. Vitha, S., Froehlich, J.E., Koksharova, O., Pyke, K.A., van Erp, H., Osteryoung, K.W. Plant Cell (2003) [Pubmed]
  20. Characterization of the genes encoding phycoerythrin in the red alga Rhodella violacea: evidence for a splitting of the rpeB gene by an intron. Bernard, C., Thomas, J.C., Mazel, D., Mousseau, A., Castets, A.M., Tandeau de Marsac, N., Dubacq, J.P. Proc. Natl. Acad. Sci. U.S.A. (1992) [Pubmed]
  21. Glu-tRNAGln amidotransferase: a novel heterotrimeric enzyme required for correct decoding of glutamine codons during translation. Curnow, A.W., Hong, K., Yuan, R., Kim, S., Martins, O., Winkler, W., Henkin, T.M., Söll, D. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  22. Substrate water exchange in photosystem II depends on the peripheral proteins. Hillier, W., Hendry, G., Burnap, R.L., Wydrzynski, T. J. Biol. Chem. (2001) [Pubmed]
  23. Subunit composition of NDH-1 complexes of Synechocystis sp. PCC 6803: identification of two new ndh gene products with nuclear-encoded homologues in the chloroplast Ndh complex. Prommeenate, P., Lennon, A.M., Markert, C., Hippler, M., Nixon, P.J. J. Biol. Chem. (2004) [Pubmed]
  24. D-GLYCERATE 3-KINASE, the last unknown enzyme in the photorespiratory cycle in Arabidopsis, belongs to a novel kinase family. Boldt, R., Edner, C., Kolukisaoglu, U., Hagemann, M., Weckwerth, W., Wienkoop, S., Morgenthal, K., Bauwe, H. Plant Cell (2005) [Pubmed]
  25. Two types of FtsH protease subunits are required for chloroplast biogenesis and Photosystem II repair in Arabidopsis. Zaltsman, A., Ori, N., Adam, Z. Plant Cell (2005) [Pubmed]
  26. Photosynthetic electron transport controls nitrogen assimilation in cyanobacteria by means of posttranslational modification of the glnB gene product. Tsinoremas, N.F., Castets, A.M., Harrison, M.A., Allen, J.F., Tandeau de Marsac, N. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  27. A hemoglobin from plants homologous to truncated hemoglobins of microorganisms. Watts, R.A., Hunt, P.W., Hvitved, A.N., Hargrove, M.S., Peacock, W.J., Dennis, E.S. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  28. The digalactosyldiacylglycerol (DGDG) synthase DGD1 is inserted into the outer envelope membrane of chloroplasts in a manner independent of the general import pathway and does not depend on direct interaction with monogalactosyldiacylglycerol synthase for DGDG biosynthesis. Froehlich, J.E., Benning, C., Dörmann, P. J. Biol. Chem. (2001) [Pubmed]
  29. delta 9 Acyl-lipid desaturases of cyanobacteria. Molecular cloning and substrate specificities in terms of fatty acids, sn-positions, and polar head groups. Sakamoto, T., Wada, H., Nishida, I., Ohmori, M., Murata, N. J. Biol. Chem. (1994) [Pubmed]
  30. Occurrence of a Photosystem II polypeptide in non-photosynthetic membranes of cyanobacteria. Smith, D., Bendall, D.S., Howe, C.J. Mol. Microbiol. (1992) [Pubmed]
  31. The nuiA gene from Anabaena sp. encoding an inhibitor of the NucA sugar-non-specific nuclease. Muro-Pastor, A.M., Herrero, A., Flores, E. J. Mol. Biol. (1997) [Pubmed]
  32. A LC/MS method for the determination of cyanobacteria toxins in water. Maizels, M., Budde, W.L. Anal. Chem. (2004) [Pubmed]
  33. Herbicide resistance and supersensitivity in photosystem II. Oettmeier, W. Cell. Mol. Life Sci. (1999) [Pubmed]
 
WikiGenes - Universities