The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Making sense with TRP channels: store-operated calcium entry and the ion channel Trpm5 in taste receptor cells.

The sense of taste plays a critical role in the life and nutritional status of organisms. During the last decade, several molecules involved in taste detection and transduction have been identified, providing a better understanding of the molecular physiology of taste receptor cells. However, a comprehensive catalogue of the taste receptor cell signaling machinery is still unavailable. We have recently described the occurrence of calcium signaling mechanisms in taste receptor cells via apparent store-operated channels and identified Trpm5, a novel candidate taste transduction element belonging to the mammalian family of transient receptor potential channels. Trpm5 is expressed in a tissue-restricted manner, with high levels in gustatory tissue. In taste cells, Trpm5 is co-expressed with taste-signaling molecules such as alpha-gustducin, Ggamma(13), phospholipase C beta(2) and inositol 1,4,5-trisphosphate receptor type III. Biophysical studies of Trpm5 heterologously expressed in Xenopus oocytes and mammalian CHO-K1 cells indicate that it functions as a store-operated channel that mediates capacitative calcium entry. The role of store-operated channels and Trpm5 in capacitative calcium entry in taste receptor cells in response to bitter compounds is discussed.[1]

References

  1. Making sense with TRP channels: store-operated calcium entry and the ion channel Trpm5 in taste receptor cells. Pérez, C.A., Margolskee, R.F., Kinnamon, S.C., Ogura, T. Cell Calcium (2003) [Pubmed]
 
WikiGenes - Universities