Transformation of the plant growth regulator daminozide (Alar) and structurally related compounds with CuII ions: oxidation versus hydrolysis.
As part of a study of metal ion effects on chemical transformations of nitrogen-containing agrochemicals, conversion of daminozide to succinate via cleavage of the hydrazide C-N bond was examined in the presence and absence of divalent metal ions. No conversion was observed in metal ion-free solutions or in the presence of 1.0 mM NiII, ZnII, and PbII. CuII, in contrast, markedly increased rates of daminozide to succinate conversion. Halide ions (CI-, Br-) had no effect on daminozide conversion in the absence of metal ions but markedly increased conversion rates observed in the presence of CuII. The nitrogen-donor ligands ethylenediamine, N-(2-hydroxyethyl)ethylenediamine, and 1,4,7,10-tetraazacyclododecane decreased rates of CuII-facilitated conversion, while 1,5,9-triazacyclododecane actually increased rates of conversion. H NMR and UV spectroscopy provide evidence for the formation of 1:1 CuII-daminozide complexes. Halide ion effects and nitrogen-donor ligand effects point to an oxidative mechanism for CuII-facilitated daminozide breakdown, rather than hydrolysis. The structurally related compound butyric acid 2,2-dimethylhydrazide (BH) is subject to the same CuII-facilitated breakdown via an oxidative mechanism. N,N-Dimethylsuccinamic acid (SA), in contrast, breaks down via a hydrolytic mechanism.[1]References
- Transformation of the plant growth regulator daminozide (Alar) and structurally related compounds with CuII ions: oxidation versus hydrolysis. Huang, C.H., Stone, A.T. Environ. Sci. Technol. (2003) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg