The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Analysis of gene expression profiles of gastric normal and cancer tissues by SAGE.

In an attempt to understand the molecular bases of gastric cancer progression, we have analyzed the differentially expressed genes in gastric cancer by SAGE. Four SAGE cDNA tag libraries were constructed from two sets of gastric cancer and normal tissues and 241,127 tags were obtained. By comparing the tags from cancer and normal tissues, 414 differentially expressed tags, representing 383 genes, were identified in cancer tissues (p </= 0.01). Of the 414 tags, 50 tags were previously unidentified and potentially novel genes. Although each gastric cancer tissue revealed more than 200 differentially expressed genes compared to the respective normal tissue, the number of genes with consistent regulation patterns in both cancer tissues was 51: 12 up-regulated and 39 down-regulated genes. The genes that showed consistent regulation patterns included well-known genes such as Trefoil factor 3, RegIV, gastric intrinsic factor, and lactotransferrin as well as a few novel candidates. Interestingly, the expression of several genes, such as osteoglycin, prostate stem cell antigen, and histone deacetylase 3, was variable in the two normal tissues but similar in the cancer tissues. The expression profiles of these genes in normal tissues, possibly due to genetic background, could greatly affect individual sensitivity to cancer development and/or progression. The genes identified in this study will provide useful target genes for diagnosis and molecular treatment of gastric cancer.[1]


  1. Analysis of gene expression profiles of gastric normal and cancer tissues by SAGE. Lee, J.Y., Eom, E.M., Kim, D.S., Ha-Lee, Y.M., Lee, D.H. Genomics (2003) [Pubmed]
WikiGenes - Universities