The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Ataxia telangiectasia-mutated protein can regulate p53 and neuronal death independent of Chk2 in response to DNA damage.

DNA damage is a key initiator of neuronal death. We have previously shown that the tumor suppressor p53, in conjunction with cyclin-dependent kinases (CDKs), regulates the mitochondrial pathway of death in neurons exposed to genotoxic agents. However, the mechanisms by which p53 is regulated is unclear. Presently, we show that p53 is phosphorylated on Ser-15 following DNA damage and this occurs independently of the CDK pathway. Instead, we show that p53 phosphorylation, stability, as well as neuronal death is regulated, in part, by the ataxia telangiectasia-mutated (ATM) protein. Previous reports have suggested that ATM regulation of p53 occurs through Chk2. However, in our present paradigms, we show that ATM functions separately from Chk2 to regulate p53 stability and neuronal death. Chk2 deficiency does not affect p53 stability or neuronal death induced by Topoisomerase I or II inhibition. Taken together, our results provide a model by which DNA damage can activate an ATM-dependent, Chk2-independent pathway of p53-mediated neuronal death.[1]

References

  1. Ataxia telangiectasia-mutated protein can regulate p53 and neuronal death independent of Chk2 in response to DNA damage. Keramaris, E., Hirao, A., Slack, R.S., Mak, T.W., Park, D.S. J. Biol. Chem. (2003) [Pubmed]
 
WikiGenes - Universities