The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Ataxia

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Ataxia

 

Psychiatry related information on Ataxia

 

High impact information on Ataxia

  • Mutations in a novel gene encoding a CRAL-TRIO domain cause human Cayman ataxia and ataxia/dystonia in the jittery mouse [11].
  • The newly recognized ataxia-ocular apraxia 1 (AOA1; MIM 208920) is the most frequent cause of autosomal recessive ataxia in Japan and is second only to Friedreich ataxia in Portugal [12].
  • Mammalian Nova antigens (1 and 2) constitute an important family of regulators of RNA metabolism in neurons, first identified using sera from cancer patients with the autoimmune disorder paraneoplastic opsoclonus-myoclonus ataxia (POMA) [13].
  • MEC1 is a homolog of ATM, mutations in which cause ataxia telangiectasia (A-T), a disease characterized by various neurologic and immunologic abnormalities, a predisposition for cancer, and a cellular defect in repair of DSBs [14].
  • Consistent with the lack of p53 activation by IR in ataxia telangiectasia (AT; refs 14,15), neither Ser376 dephosphorylation, nor the interaction of p53 with 14-3-3 proteins occurred in AT cells [15].
 

Chemical compound and disease context of Ataxia

 

Biological context of Ataxia

 

Anatomical context of Ataxia

 

Gene context of Ataxia

  • Rad3 is an inessential member of the 'lipid kinase' subclass of kinases which includes the ATM protein defective in ataxia telangiectasia patients [31].
  • No patient without a family history of ataxia, or with a pure cerebellar or spastic syndrome, tested positive for SCA1, SCA2, or SCA3 [32].
  • Fragile-X-associated tremor/ataxia syndrome (FXTAS) in females with the FMR1 premutation [33].
  • The entire coding region of PRKCG was sequenced in an affected member of family AT08 and in a group of 39 unrelated patients with ataxia not attributable to trinucleotide expansions [34].
  • Our data show that mutations in the PEX7 gene may result in a broad clinical spectrum ranging from severe rhizomelic chondrodysplasia punctata to relatively mild RD and that clinical diagnosis of conditions involving retinitis pigmentosa, ataxia, and polyneuropathy may require a full screen of peroxisomal functions [35].
 

Analytical, diagnostic and therapeutic context of Ataxia

  • Acetazolamide-responsive episodic ataxia in an Italian family refines gene mapping on chromosome 19p13 [36].
  • Affected (par/par) mice can be first recognized at approximately postnatal day (PN) 7 to 8 and are characterized by their smaller-than-normal body size, a progressive generalized muscle weakness, and lack of coordination [37].
  • Comprehensive dose-response assessments demonstrated that acute i.v. injections of (+)-MK801 induced a behavioral neurotoxic syndrome comprised of head-weaving, ataxia, hyperlocomotion and myoclonic/clonic behaviors and associated with disruptions in normal EEG rhythms including paroxysmal EEG spike/wave complexes [38].
  • SKF 525A pretreatment markedly prolonged ataxia, analgesia and agitation, in addition to significantly elevating brain and plasms ketamine levels subsequent to the initial 10 minutes following injection; thus hepatic metabolism appeared to play a prominent role in the termination of the posthypnotic effects of the drug [39].
  • To quantify ataxia in a simple way four tests were developed and analysed, based on the neurological examination: a tapping test for the arms (test 1), another one for the legs (test 2), a quantified finger-to-nose test (test 3), and a modified Romberg test (test 4) [40].

References

  1. TEL1, a gene involved in controlling telomere length in S. cerevisiae, is homologous to the human ataxia telangiectasia gene. Greenwell, P.W., Kronmal, S.L., Porter, S.E., Gassenhuber, J., Obermaier, B., Petes, T.D. Cell (1995) [Pubmed]
  2. Elevated alcohol consumption in null mutant mice lacking 5-HT1B serotonin receptors. Crabbe, J.C., Phillips, T.J., Feller, D.J., Hen, R., Wenger, C.D., Lessov, C.N., Schafer, G.L. Nat. Genet. (1996) [Pubmed]
  3. Early-onset ataxia with ocular motor apraxia and hypoalbuminemia is caused by mutations in a new HIT superfamily gene. Date, H., Onodera, O., Tanaka, H., Iwabuchi, K., Uekawa, K., Igarashi, S., Koike, R., Hiroi, T., Yuasa, T., Awaya, Y., Sakai, T., Takahashi, T., Nagatomo, H., Sekijima, Y., Kawachi, I., Takiyama, Y., Nishizawa, M., Fukuhara, N., Saito, K., Sugano, S., Tsuji, S. Nat. Genet. (2001) [Pubmed]
  4. Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Ophoff, R.A., Terwindt, G.M., Vergouwe, M.N., van Eijk, R., Oefner, P.J., Hoffman, S.M., Lamerdin, J.E., Mohrenweiser, H.W., Bulman, D.E., Ferrari, M., Haan, J., Lindhout, D., van Ommen, G.J., Hofker, M.H., Ferrari, M.D., Frants, R.R. Cell (1996) [Pubmed]
  5. Differential induction of transcriptionally active p53 following UV or ionizing radiation: defects in chromosome instability syndromes? Lu, X., Lane, D.P. Cell (1993) [Pubmed]
  6. Senataxin, the ortholog of a yeast RNA helicase, is mutant in ataxia-ocular apraxia 2. Moreira, M.C., Klur, S., Watanabe, M., Németh, A.H., Le Ber, I., Moniz, J.C., Tranchant, C., Aubourg, P., Tazir, M., Schöls, L., Pandolfo, M., Schulz, J.B., Pouget, J., Calvas, P., Shizuka-Ikeda, M., Shoji, M., Tanaka, M., Izatt, L., Shaw, C.E., M'Zahem, A., Dunne, E., Bomont, P., Benhassine, T., Bouslam, N., Stevanin, G., Brice, A., Guimarães, J., Mendonça, P., Barbot, C., Coutinho, P., Sequeiros, J., Dürr, A., Warter, J.M., Koenig, M. Nat. Genet. (2004) [Pubmed]
  7. Natural history of symptomatic partial ornithine transcarbamylase deficiency. Rowe, P.C., Newman, S.L., Brusilow, S.W. N. Engl. J. Med. (1986) [Pubmed]
  8. Mutations in the AHI1 gene, encoding jouberin, cause Joubert syndrome with cortical polymicrogyria. Dixon-Salazar, T., Silhavy, J.L., Marsh, S.E., Louie, C.M., Scott, L.C., Gururaj, A., Al-Gazali, L., Al-Tawari, A.A., Kayserili, H., Sztriha, L., Gleeson, J.G. Am. J. Hum. Genet. (2004) [Pubmed]
  9. A mouse model for Glut-1 haploinsufficiency. Wang, D., Pascual, J.M., Yang, H., Engelstad, K., Mao, X., Cheng, J., Yoo, J., Noebels, J.L., De Vivo, D.C. Hum. Mol. Genet. (2006) [Pubmed]
  10. A progressive syndrome of autism, dementia, ataxia, and loss of purposeful hand use in girls: Rett's syndrome: report of 35 cases. Hagberg, B., Aicardi, J., Dias, K., Ramos, O. Ann. Neurol. (1983) [Pubmed]
  11. Mutations in a novel gene encoding a CRAL-TRIO domain cause human Cayman ataxia and ataxia/dystonia in the jittery mouse. Bomar, J.M., Benke, P.J., Slattery, E.L., Puttagunta, R., Taylor, L.P., Seong, E., Nystuen, A., Chen, W., Albin, R.L., Patel, P.D., Kittles, R.A., Sheffield, V.C., Burmeister, M. Nat. Genet. (2003) [Pubmed]
  12. The gene mutated in ataxia-ocular apraxia 1 encodes the new HIT/Zn-finger protein aprataxin. Moreira, M.C., Barbot, C., Tachi, N., Kozuka, N., Uchida, E., Gibson, T., Mendonça, P., Costa, M., Barros, J., Yanagisawa, T., Watanabe, M., Ikeda, Y., Aoki, M., Nagata, T., Coutinho, P., Sequeiros, J., Koenig, M. Nat. Genet. (2001) [Pubmed]
  13. Sequence-specific RNA binding by a Nova KH domain: implications for paraneoplastic disease and the fragile X syndrome. Lewis, H.A., Musunuru, K., Jensen, K.B., Edo, C., Chen, H., Darnell, R.B., Burley, S.K. Cell (2000) [Pubmed]
  14. MEC1-dependent redistribution of the Sir3 silencing protein from telomeres to DNA double-strand breaks. Mills, K.D., Sinclair, D.A., Guarente, L. Cell (1999) [Pubmed]
  15. ATM-dependent activation of p53 involves dephosphorylation and association with 14-3-3 proteins. Waterman, M.J., Stavridi, E.S., Waterman, J.L., Halazonetis, T.D. Nat. Genet. (1998) [Pubmed]
  16. Ataxia with isolated vitamin E deficiency is caused by mutations in the alpha-tocopherol transfer protein. Ouahchi, K., Arita, M., Kayden, H., Hentati, F., Ben Hamida, M., Sokol, R., Arai, H., Inoue, K., Mandel, J.L., Koenig, M. Nat. Genet. (1995) [Pubmed]
  17. Sensory neuropathy from pyridoxine abuse. A new megavitamin syndrome. Schaumburg, H., Kaplan, J., Windebank, A., Vick, N., Rasmus, S., Pleasure, D., Brown, M.J. N. Engl. J. Med. (1983) [Pubmed]
  18. Bleomycin-resistant DNA synthesis in ataxia telangiectasia cells. Cramer, P., Painter, R.B. Nature (1981) [Pubmed]
  19. Selective extraction of small and large molecules from the cerebrospinal fluid by Purkinje neurons. Borges, L.F., Elliott, P.J., Gill, R., Iversen, S.D., Iversen, L.L. Science (1985) [Pubmed]
  20. From GABAA receptor diversity emerges a unified vision of GABAergic inhibition. Costa, E. Annu. Rev. Pharmacol. Toxicol. (1998) [Pubmed]
  21. Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome. Varon, R., Vissinga, C., Platzer, M., Cerosaletti, K.M., Chrzanowska, K.H., Saar, K., Beckmann, G., Seemanová, E., Cooper, P.R., Nowak, N.J., Stumm, M., Weemaes, C.M., Gatti, R.A., Wilson, R.K., Digweed, M., Rosenthal, A., Sperling, K., Concannon, P., Reis, A. Cell (1998) [Pubmed]
  22. A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Savitsky, K., Bar-Shira, A., Gilad, S., Rotman, G., Ziv, Y., Vanagaite, L., Tagle, D.A., Smith, S., Uziel, T., Sfez, S. Science (1995) [Pubmed]
  23. Bloom's syndrome protein is required for correct relocalization of RAD50/MRE11/NBS1 complex after replication fork arrest. Franchitto, A., Pichierri, P. J. Cell Biol. (2002) [Pubmed]
  24. Clues to catastrophic telomere loss in mammals from yeast telomere rapid deletion. Lustig, A.J. Nat. Rev. Genet. (2003) [Pubmed]
  25. A role for the Tip60 histone acetyltransferase in the acetylation and activation of ATM. Sun, Y., Jiang, X., Chen, S., Fernandes, N., Price, B.D. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  26. ATM mutations are rare in familial chronic lymphocytic leukemia. Yuille, M.R., Condie, A., Hudson, C.D., Bradshaw, P.S., Stone, E.M., Matutes, E., Catovsky, D., Houlston, R.S. Blood (2002) [Pubmed]
  27. Frequency and severity of central nervous system lesions in hemophagocytic lymphohistiocytosis. Haddad, E., Sulis, M.L., Jabado, N., Blanche, S., Fischer, A., Tardieu, M. Blood (1997) [Pubmed]
  28. A cellular model for Friedreich Ataxia reveals small-molecule glutathione peroxidase mimetics as novel treatment strategy. Jauslin, M.L., Wirth, T., Meier, T., Schoumacher, F. Hum. Mol. Genet. (2002) [Pubmed]
  29. Elevation of interferon beta-inducible proteins in ataxia telangiectasia cells. Siddoo-Atwal, C., Haas, A.L., Rosin, M.P. Cancer Res. (1996) [Pubmed]
  30. Kinetics of O6-methylguanine repair in human normal and ataxia telangiectasia cell lines and correlation of repair capacity with cellular sensitivity to methylating agents. Shiloh, Y., Becker, Y. Cancer Res. (1981) [Pubmed]
  31. The Schizosaccharomyces pombe rad3 checkpoint gene. Bentley, N.J., Holtzman, D.A., Flaggs, G., Keegan, K.S., DeMaggio, A., Ford, J.C., Hoekstra, M., Carr, A.M. EMBO J. (1996) [Pubmed]
  32. The prevalence and wide clinical spectrum of the spinocerebellar ataxia type 2 trinucleotide repeat in patients with autosomal dominant cerebellar ataxia. Geschwind, D.H., Perlman, S., Figueroa, C.P., Treiman, L.J., Pulst, S.M. Am. J. Hum. Genet. (1997) [Pubmed]
  33. Fragile-X-associated tremor/ataxia syndrome (FXTAS) in females with the FMR1 premutation. Hagerman, R.J., Leavitt, B.R., Farzin, F., Jacquemont, S., Greco, C.M., Brunberg, J.A., Tassone, F., Hessl, D., Harris, S.W., Zhang, L., Jardini, T., Gane, L.W., Ferranti, J., Ruiz, L., Leehey, M.A., Grigsby, J., Hagerman, P.J. Am. J. Hum. Genet. (2004) [Pubmed]
  34. Missense mutations in the regulatory domain of PKC gamma: a new mechanism for dominant nonepisodic cerebellar ataxia. Chen, D.H., Brkanac, Z., Verlinde, C.L., Tan, X.J., Bylenok, L., Nochlin, D., Matsushita, M., Lipe, H., Wolff, J., Fernandez, M., Cimino, P.J., Bird, T.D., Raskind, W.H. Am. J. Hum. Genet. (2003) [Pubmed]
  35. Identification of PEX7 as the second gene involved in Refsum disease. van den Brink, D.M., Brites, P., Haasjes, J., Wierzbicki, A.S., Mitchell, J., Lambert-Hamill, M., de Belleroche, J., Jansen, G.A., Waterham, H.R., Wanders, R.J. Am. J. Hum. Genet. (2003) [Pubmed]
  36. Acetazolamide-responsive episodic ataxia in an Italian family refines gene mapping on chromosome 19p13. Calandriello, L., Veneziano, L., Francia, A., Sabbadini, G., Colonnese, C., Mantuano, E., Jodice, C., Trettel, F., Viviani, P., Manfredi, M., Frontali, M. Brain (1997) [Pubmed]
  37. The paralysé mouse mutant: a new animal model of anterior horn motor neuron degeneration. Houenou, L.J., Blondet, B., Li, L., Murawsky, M., Oppenheim, R.W., Rieger, F. J. Neuropathol. Exp. Neurol. (1996) [Pubmed]
  38. EEG seizure activity and behavioral neurotoxicity produced by (+)-MK801, but not the glycine site antagonist L-687,414, in the rat. Tortella, F.C., Hill, R.G. Neuropharmacology (1996) [Pubmed]
  39. Biodisposition of ketamine in the rat: self-induction of metabolism. Marietta, M.P., White, P.F., Pudwill, C.R., Way, W.L., Trevor, A.J. J. Pharmacol. Exp. Ther. (1976) [Pubmed]
  40. Measuring ataxia: quantification based on the standard neurological examination. Notermans, N.C., van Dijk, G.W., van der Graaf, Y., van Gijn, J., Wokke, J.H. J. Neurol. Neurosurg. Psychiatr. (1994) [Pubmed]
 
WikiGenes - Universities