mGluR2 postsynaptically senses granule cell inputs at Golgi cell synapses.
In the cerebellar circuit, Golgi cells are thought to contribute to information processing and integration via feedback mechanisms. In these mechanisms, dynamic modulation of Golgi cell excitability is necessary because GABA from Golgi cells causes tonic inhibition on granule cells. We studied the role and synaptic mechanisms of postsynaptic metabotropic glutamate receptor subtype 2 ( mGluR2) at granule cell-Golgi cell synapses, using whole-cell recording of green fluorescent protein-positive Golgi cells of wild-type and mGluR2-deficient mice. Postsynaptic mGluR2 was activated by glutamate from granule cells and hyperpolarized Golgi cells via G protein-coupled inwardly rectifying K+ channels (GIRKs). This hyperpolarization conferred long-lasting silencing of Golgi cells, the duration and extents of which were dependent on stimulus strengths. Postsynaptic mGluR2 thus senses inputs from granule cells and is most likely important for spatiotemporal modulation of mossy fiber-granule cell transmission before distributing inputs to Purkinje cells.[1]References
- mGluR2 postsynaptically senses granule cell inputs at Golgi cell synapses. Watanabe, D., Nakanishi, S. Neuron (2003) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg