The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

P2- purinergic receptor agonists inhibit the growth of androgen-independent prostate carcinoma cells.

To develop a new approach to the treatment of advanced, hormone-refractory prostate cancer, the signal transductions regulating the growth of human androgen-independent prostate carcinoma cell lines were studied. Agonist-stimulated Ca2+ mobilization, a critical regulatory event in other secretory cell types, was studied as a means of identifying previously undescribed plasma membrane receptors that may transduce a growth inhibitory signal. In all of the cell lines tested, P2- purinergic receptor agonists, including ATP and certain hydrolysis-resistant adenine nucleotides, induced a rapid, transient increase in cytoplasmic free Ca2+ that was detectable at 50 to 100 nM ATP, was maximal at 100 microM ATP, and was inhibited approximately 50% by chelation of extracellular Ca2+. Within 8 s after addition, ATP stimulated accumulation of the polyphosphatidylinositol products inositol (1, 4, 5) trisphosphate, inositol (1, 3, 4) trisphosphate, and inositol tetrakisphosphate. In addition to stimulating phosphatidylinositol turnover and Ca2+ mobilization, ATP and hydrolysis-resistant ATP analogues induced greater than 90% inhibition of the growth of all lines tested. These data demonstrate that human androgen-independent prostate carcinoma cells express functional P2-purinergic receptors linked to phospholipase C, and that agonists of this receptor are markedly growth inhibitory, suggesting a novel therapeutic approach to this common adult neoplasm.[1]


  1. P2-purinergic receptor agonists inhibit the growth of androgen-independent prostate carcinoma cells. Fang, W.G., Pirnia, F., Bang, Y.J., Myers, C.E., Trepel, J.B. J. Clin. Invest. (1992) [Pubmed]
WikiGenes - Universities