The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Activation of second-messenger pathways reactivates latent herpes simplex virus in neuronal cultures.

Herpes simplex virus type 1 (HSV-1) establishes latent infections in neurons of sympathetic and sensory ganglia in humans, and reactivation of latent virus results in recurrent disease. Previously, we reported establishment of latent HSV-1 infections in neuronal cultures derived from rats, monkeys, and humans; reactivation occurs following nerve growth factor ( NGF) deprivation. The processes controlling HSV latency are not understood. Using the in vitro neuronal latency system, we have shown that latent HSV-1 reactivated in response to stimulation of at least two second-messenger pathways. Stimulation of cAMP-dependent pathways by several mechanisms or activation of protein kinase C by phorbol myristate acetate (PMA) resulted in reactivation of latent HSV-1. The reactivation kinetics following treatment with activators of protein kinase A and C were accelerated compared with those following NGF deprivation. 2-Aminopurine, which inhibits NGF-stimulated protein kinases and other classes of protein kinases, but does not effect protein kinase A or C, blocked reactivation produced by NGF deprivation or treatment with a cAMP analog, but not reactivation by PMA treatment. These results demonstrate that latent HSV-1 reactivates in neurons in vitro in response to activation of second-messenger pathways.[1]


  1. Activation of second-messenger pathways reactivates latent herpes simplex virus in neuronal cultures. Smith, R.L., Pizer, L.I., Johnson, E.M., Wilcox, C.L. Virology (1992) [Pubmed]
WikiGenes - Universities