Expression of myogenic factors in skeletal muscle and electric organ of Torpedo californica.
Fish electric organ is a skeletal muscle homolog in which many muscle-specific genes are inhibited while acetylcholine receptor is expressed at high levels. The molecular mechanisms underlying this discoordinate regulation have not yet been explored. We have obtained partial sequences for MyoD, myogenin, and myf5 from Torpedo californica and have measured their mRNAs in several organs, using ribonuclease protection. We have found that MyoD and myf5 are expressed at comparable levels in muscle and electric organ, whereas myogenin transcripts could not be detected in either tissue. Acetylcholine receptor alpha subunit mRNA, on the other hand, is two orders of magnitude more abundant in electric tissue. We conclude that neither the loss of contractile proteins from, nor the enhanced expression of acetylcholine receptor genes in, the differentiating electrocyte is a simple consequence of the abundance of myogenic factor messages.[1]References
- Expression of myogenic factors in skeletal muscle and electric organ of Torpedo californica. Neville, C.M., Schmidt, J. FEBS Lett. (1992) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg