Characteristics of synaptic transmission in reinnervating rat skeletal muscle.
Synaptic transmission, and its sensitivity to the effects of 3,4-diaminopyridine (3,4-DAP) and the phosphatase 2,3-butanedione monoxime (BDM), was examined for "crushed fiber" preparations of rat extensor digitorum longus muscle undergoing reinnervation after nerve crush. While mean quantal content (m) of endplate potentials (EPPs) was low early during reinnervation (10-24 days after nerve crush), elevation of temperature or extracellular calcium concentration restored m toward normal. However, m achieved control values for reinnervating preparations exposed to 3,4-DAP. 3,4-DAP also activated quiescent motor nerve terminals: after exposure to this drug, synaptic transmission was detected as early as 8 days after nerve crush. BDM too activated quiescent regenerating motor nerve terminals and increased m to normal. It also prolonged EPP and endplate current decay, suggesting a pre-synaptic effect on the synchrony of transmitter release and/or a post-synaptic effect on the open time of acetylcholine-gated endplate channels. While the effects of temperature, extracellular calcium, 3,4-DAP, and BDM suggest that regenerating nerve terminals can mobilise a reserve of quanta, this reserve is abnormally low, since hemicholinium-3 caused rapid rundown of EPP amplitude at repetitively stimulated regenerating endplates.[1]References
- Characteristics of synaptic transmission in reinnervating rat skeletal muscle. Argentieri, T.M., Aiken, S.P., Laxminarayan, S., McArdle, J.J. Pflugers Arch. (1992) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg