The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Hemicholinium     2-[4-[4-(2-hydroxy-4,4- dimethyl-1-oxa-4...

Synonyms: CHEMBL268697, AG-K-35901, BSPBio_000605, SureCN12638596, SPBio_002526, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Hemicholinium


Psychiatry related information on Hemicholinium


High impact information on Hemicholinium


Biological context of Hemicholinium


Anatomical context of Hemicholinium


Associations of Hemicholinium with other chemical compounds


Gene context of Hemicholinium

  • The objective of this study was to determine the effect of age and chronic intracerebral administration of nerve growth factor (NGF) on the activity of the presynaptic cholinergic neuronal markers hemicholinium-sensitive high-affinity choline uptake (HACU) and choline acetyltransferase (ChAT) in the brain of Fisher 344 male rats [23].
  • In parallel, the activities of hemicholinium-sensitive high-affinity choline uptake (HACU, in synaptosomes) and of choline acetyltransferase (ChAT, in crude homogenates) were determined as markers for the cholinergic ingrowth [24].
  • These cells accumulated [3H]choline by a high-affinity, hemicholinium-sensitive transport system, converted [3H]choline to [3H]-acetylcholine [( 3H]ACh), released [3H]ACh in response to depolarization stimuli, and developed choline acetyltransferase (ChAT) activity to levels comparable to those of the intact retina [25].
  • These morpholinium inhibitors are compared with conformationally constrained aryl hemicholinium AChE inhibitors [26].
  • A pretreatment with hemicholinium also inhibited the spontaneous as well the oxytocin-induced motility of M strips, without affecting those of LU [27].

Analytical, diagnostic and therapeutic context of Hemicholinium


  1. Effect of corticosteroids on the phrenic nerve-diaphragm of preparation treated with hemicholinium. A possible model of myasthenia gravis. Wolters, M.J., Leeuwin, R.S. Neurology (1976) [Pubmed]
  2. Noradrenaline-induced emesis. Alpha-2 adrenoceptor mediation in the area postrema. Beleslin, D.B., Strbac, M. Neuropharmacology (1987) [Pubmed]
  3. Evidence for a cholinergic role in haloperidol-induced catalepsy. Klemm, W.R. Psychopharmacology (Berl.) (1985) [Pubmed]
  4. Cholinergic learning deficits in the marmoset produced by scopolamine and ICV hemicholinium. Ridley, R.M., Barratt, N.G., Baker, H.F. Psychopharmacology (Berl.) (1984) [Pubmed]
  5. Attentional functions of the forebrain cholinergic systems: effects of intraventricular hemicholinium, physostigmine, basal forebrain lesions and intracortical grafts on a multiple-choice serial reaction time task. Muir, J.L., Dunnett, S.B., Robbins, T.W., Everitt, B.J. Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale. (1992) [Pubmed]
  6. Evidence for high affinity choline transport in synaptosomes prepared from hippocampus and neocortex of patients with Alzheimer's disease. Rylett, R.J., Ball, M.J., Colhoun, E.H. Brain Res. (1983) [Pubmed]
  7. Acetylcholine compartments in mouse diaphragm. Comparison of the effects of black widow spider venom, electrical stimulation, and high concentrations of potassium. Gorio, A., Hurlbut, W.P., Ceccarelli, B. J. Cell Biol. (1978) [Pubmed]
  8. Neurogenic vasodilation of cat cerebral arteries. Lee, T.J., Hume, W.R., Su, C., Bevan, J.A. Circ. Res. (1978) [Pubmed]
  9. Synaptic vesicle abnormality in familial infantile myasthenia. Mora, M., Lambert, E.H., Engel, A.G. Neurology (1987) [Pubmed]
  10. Plastic and behavioral abnormalities in experimental Huntington's disease: a crucial role for cholinergic interneurons. Picconi, B., Passino, E., Sgobio, C., Bonsi, P., Barone, I., Ghiglieri, V., Pisani, A., Bernardi, G., Ammassari-Teule, M., Calabresi, P. Neurobiol. Dis. (2006) [Pubmed]
  11. Enhanced hemicholinium binding and attenuated dendrite branching in cognitively impaired acetylcholinesterase-transgenic mice. Beeri, R., Le Novère, N., Mervis, R., Huberman, T., Grauer, E., Changeux, J.P., Soreq, H. J. Neurochem. (1997) [Pubmed]
  12. Inhibition of high-affinity choline uptake and acetylcholine synthesis by quinuclidinyl and hemicholinium derivatives. Sterling, G.H., Doukas, P.H., Ricciardi, F.J., Biedrzycka, D.W., O'Neill, J.J. J. Neurochem. (1986) [Pubmed]
  13. Acetylation of some novel hemicholinium compounds by soluble choline acetyltransferase: structure-activity relationships. Shreeve, S.M., Veitch, G.B., Hemsworth, B.A. J. Med. Chem. (1984) [Pubmed]
  14. Reducing transmitter release from nerve terminals influences motoneuron survival in developing rats. Greensmith, L., Ng, P., Mohaghegh, P., Vrbová, G. Neuroscience (2000) [Pubmed]
  15. Regulation of hemicholinium binding sites in isolated nerve terminals. Knipper, M., Kahle, C., Breer, H. J. Neurobiol. (1992) [Pubmed]
  16. The effects of prolonged repetitive stimulation in hemicholinium on the frog neuromuscular junction. Ceccarelli, B., Hurlbut, W.P. J. Physiol. (Lond.) (1975) [Pubmed]
  17. Uptake and metabolism of [3H]choline mustard by cholinergic nerve terminals from rat brain. Rylett, R.J., Walters, S.A. Neuroscience (1990) [Pubmed]
  18. Cholinergic markers are expressed in developing and mature neurons of chick dorsal root ganglia. Tata, A.M., Plateroti, M., Cibati, M., Biagioni, S., Augusti-Tocco, G. J. Neurosci. Res. (1994) [Pubmed]
  19. 6-hydroxydopamine-induced lesions of dopaminergic neurons alter the function of postsynaptic cholinergic neurons without changing cytoskeletal proteins. Muma, N.A., Lee, J.M., Gorman, L., Heidenreich, B.A., Mitrovic, I., Napier, T.C. Exp. Neurol. (2001) [Pubmed]
  20. Action of methylxanthines and imidazole on the contractility of the terminal ileum of the guinea pig. Kazić, T. Eur. J. Pharmacol. (1977) [Pubmed]
  21. The effect of nicotine and cytisine on 3H-acetylcholine release from cortical slices of guinea-pig brain. Beani, L., Bianchi, C., Nilsson, L., Nordberg, A., Romanelli, L., Sivilotti, L. Naunyn Schmiedebergs Arch. Pharmacol. (1985) [Pubmed]
  22. The role of ventrolateral striatal acetylcholine in the production of tacrine-induced jaw movements. Cousins, M.S., Finn, M., Trevitt, J., Carriero, D.L., Conlan, A., Salamone, J.D. Pharmacol. Biochem. Behav. (1999) [Pubmed]
  23. Exogenous nerve growth factor increases the activity of high-affinity choline uptake and choline acetyltransferase in brain of Fisher 344 male rats. Williams, L.R., Rylett, R.J. J. Neurochem. (1990) [Pubmed]
  24. Postnatal development of muscarinic autoreceptors modulating acetylcholine release in the septohippocampal cholinergic system. I. Axon terminal region: hippocampus. Goldbach, R., Allgaier, C., Heimrich, B., Jackisch, R. Brain Res. Dev. Brain Res. (1998) [Pubmed]
  25. Selective expression of factors preventing cholinergic dedifferentiation. DeMello, F.G., DeMello, M.C., Hudson, R., Klein, W.L. J. Neurochem. (1990) [Pubmed]
  26. Change in the mode of inhibition of acetylcholinesterase by (4-nitrophenyl)sulfonoxyl derivatives of conformationally constrained choline analogues. Savle, P.S., Medhekar, R.A., Kelley, E.L., May, J.G., Watkins, S.F., Fronczek, F.R., Quinn, D.M., Gandour, R.D. Chem. Res. Toxicol. (1998) [Pubmed]
  27. Functional pharmacological and morphological characteristics of two regions of rat uterine horns. Borda, E.S., Sterin-Borda, L., Sterin-Speziale, N., Gimeno, M.F., Gimeno, A.L. Acta physiologica latino americana. (1978) [Pubmed]
  28. Reduced expression and capacity of the striatal high-affinity choline transporter in hyperdopaminergic mice. Parikh, V., Apparsundaram, S., Kozak, R., Richards, J.B., Sarter, M. Neuroscience (2006) [Pubmed]
WikiGenes - Universities