The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Nerve Crush

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Nerve Crush

  • Restoration of the BNB to the dextran began within four weeks and was complete by 14 weeks in tellurium neuropathy, a model of demyelinating neuropathy characterized by rapid remyelination, and after nerve crush, a model of Wallerian degeneration characterized by rapid axonal regeneration into distal stump [1].
  • The astrocytic expression of glial fibrillary acidic protein in response to nerve crush proceeded gradually over a period of several weeks after which it declined, contrasting with accelerated astrocytic hypertrophy and permanent glial scarring after neuronal degeneration [2].

High impact information on Nerve Crush


Biological context of Nerve Crush


Anatomical context of Nerve Crush


Associations of Nerve Crush with chemical compounds


Gene context of Nerve Crush


Analytical, diagnostic and therapeutic context of Nerve Crush


  1. Restoration of blood-nerve barrier in neuropathy is associated with axonal regeneration and remyelination. Bouldin, T.W., Earnhardt, T.S., Goines, N.D. J. Neuropathol. Exp. Neurol. (1991) [Pubmed]
  2. Response of endogenous glial cells to motor neuron degeneration induced by toxic ricin. Streit, W.J., Kreutzberg, G.W. J. Comp. Neurol. (1988) [Pubmed]
  3. A developmentally regulated switch directs regenerative growth of Schwann cells through cyclin D1. Kim, H.A., Pomeroy, S.L., Whoriskey, W., Pawlitzky, I., Benowitz, L.I., Sicinski, P., Stiles, C.D., Roberts, T.M. Neuron (2000) [Pubmed]
  4. Rapid neural regulation of muscle urokinase-like plasminogen activator as defined by nerve crush. Hantaï, D., Rao, J.S., Festoff, B.W. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  5. The optic tract and tectal ablation influence the composition of neurofilaments in regenerating optic axons of Xenopus laevis. Zhao, Y., Szaro, B.G. J. Neurosci. (1995) [Pubmed]
  6. In vivo visualization of pre- and postsynaptic changes during synapse elimination in reinnervated mouse muscle. Rich, M.M., Lichtman, J.W. J. Neurosci. (1989) [Pubmed]
  7. Association of neurotensin binding sites with sensory and visceromotor components of the vagus nerve. Kessler, J.P., Beaudet, A. J. Neurosci. (1989) [Pubmed]
  8. Fast axonal transport of the vesicular acetylcholine transporter (VAChT) in cholinergic neurons in the rat sciatic nerve. Li, J.Y., Dahlström, A.M., Hersh, L.B., Dahlström, A. Neurochem. Int. (1998) [Pubmed]
  9. Effect of estrogen on urethral function and nerve regeneration following pudendal nerve crush in the female rat. Ahmed, Y., Lin, D.L., Ferguson, C., Esparza, N., Damaser, M.S. J. Urol. (2006) [Pubmed]
  10. The facial motor nucleus transcriptional program in response to peripheral nerve injury identifies Hn1 as a regeneration-associated gene. Zujovic, V., Luo, D., Baker, H.V., Lopez, M.C., Miller, K.R., Streit, W.J., Harrison, J.K. J. Neurosci. Res. (2005) [Pubmed]
  11. Time-dependent alteration of insulin-like growth factor gene expression during nerve regeneration in regions of muscle enriched with neuromuscular junctions. Pu, S.F., Zhuang, H.X., Marsh, D.J., Ishii, D.N. Brain Res. Mol. Brain Res. (1999) [Pubmed]
  12. Characteristics of synaptic transmission in reinnervating rat skeletal muscle. Argentieri, T.M., Aiken, S.P., Laxminarayan, S., McArdle, J.J. Pflugers Arch. (1992) [Pubmed]
  13. Targeted disruption of the FGF-2 gene affects the response to peripheral nerve injury. Jungnickel, J., Claus, P., Gransalke, K., Timmer, M., Grothe, C. Mol. Cell. Neurosci. (2004) [Pubmed]
  14. Altered connexin expression after peripheral nerve injury. Chandross, K.J., Kessler, J.A., Cohen, R.I., Simburger, E., Spray, D.C., Bieri, P., Dermietzel, R. Mol. Cell. Neurosci. (1996) [Pubmed]
  15. Motor unit size and synaptic competition in rat lumbrical muscles reinnervated by active and inactive motor axons. Ribchester, R.R., Taxt, T. J. Physiol. (Lond.) (1983) [Pubmed]
  16. Macrophage recruitment in different models of nerve injury: lysozyme as a marker for active phagocytosis. Venezie, R.D., Toews, A.D., Morell, P. J. Neurosci. Res. (1995) [Pubmed]
  17. Impaired induction of ornithine decarboxylase activity following nerve crush in the streptozotocin-diabetic rat. McLean, W.G., Chapman, J.E., Cullum, N.A. Diabetologia (1987) [Pubmed]
  18. Upregulation of bradykinin B2 receptor expression by neurotrophic factors and nerve injury in mouse sensory neurons. Lee, Y.J., Zachrisson, O., Tonge, D.A., McNaughton, P.A. Mol. Cell. Neurosci. (2002) [Pubmed]
  19. Effects of long-term conduction block on membrane properties of reinnervated and normally innervated rat skeletal muscle. Pasino, E., Buffelli, M., Arancio, O., Busetto, G., Salviati, A., Cangiano, A. J. Physiol. (Lond.) (1996) [Pubmed]
  20. Uridine metabolism in the goldfish retina during optic nerve regeneration: cell-free preparations. Kohsaka, S., Dokas, L.A., Agranoff, B.W. J. Neurochem. (1981) [Pubmed]
  21. Selective reduction in the nicotinic acetylcholine receptor and dystroglycan at the postsynaptic apparatus of mdx mouse superior cervical ganglion. Zaccaria, M.L., De Stefano, M.E., Gotti, C., Petrucci, T.C., Paggi, P. J. Neuropathol. Exp. Neurol. (2000) [Pubmed]
  22. Brain-derived neurotrophic factor reduces TrkB protein and mRNA in the normal retina and following optic nerve crush in adult rats. Chen, H., Weber, A.J. Brain Res. (2004) [Pubmed]
  23. Muscle-derived neurotrophin-3 reduces injury-induced proprioceptive degeneration in neonatal mice. Wright, D.E., Williams, J.M., McDonald, J.T., Carlsten, J.A., Taylor, M.D. J. Neurobiol. (2002) [Pubmed]
  24. Expression of fibroblast growth factor-2 and fibroblast growth factor receptor 1 messenger RNAs in spinal ganglia and sciatic nerve: regulation after peripheral nerve lesion. Grothe, C., Meisinger, C., Hertenstein, A., Kurz, H., Wewetzer, K. Neuroscience (1997) [Pubmed]
  25. Contractile properties of rat fast-twitch skeletal muscle during reinnervation: effects of testosterone and castration. Yeagle, S.P., Mayer, R.F., Max, S.R. Exp. Neurol. (1983) [Pubmed]
  26. Ultrastructural co-localization of calmodulin and B-50/growth-associated protein-43 at the plasma membrane of proximal unmyelinated axon shafts studied in the model of the regenerating rat sciatic nerve. Verkade, P., Schrama, L.H., Verkleij, A.J., Gispen, W.H., Oestreicher, A.B. Neuroscience (1997) [Pubmed]
  27. Nerve dependent regulation of neural cell adhesion molecule expression in skeletal muscle. Moore, S.E., Walsh, F.S. Neuroscience (1986) [Pubmed]
WikiGenes - Universities